, Volume 79, Issue 1, pp 75–87 | Cite as

Genetic diversity and host relationships of endosymbiotic bacteria in the Asian cryptic species of Bemisia tabaci from Bangladesh

  • Mst. Fatema Khatun
  • Jae-Kyoung Shim
  • Kyeong-Yeoll LeeEmail author


Endosymbiotic bacteria are common in many herbivorous insects. Bemisia tabaci is a phloem-sapping pest of various crop plants and is known to harbor at least five endosymbionts. This species is a complex of at least 40 genetically distinct but morphologically indistinguishable cryptic species worldwide. Endosymbiont composition has been studied in invasive cryptic species such as MEAM1 and MED, but little information exists regarding the indigenous genetic groups in Asia. Here, we determined the endosymbiont profiles of four indigenous Asian cryptic species (Asia I, Asia II 1, Asia II 5 and Asia II 10) of B. tabaci identified in Bangladesh. Overall, the infection rates of Arsenophonus, Cardinium, Hamiltonella, Rickettsia, and Wolbachia were 93%, 86%, 0%, 31%, and 88%, respectively. Phylogenetic analysis revealed two subgroups in Arsenophonus (A1, A2) and Rickettsia (R1, R2), but only one subgroup in Cardinium (C2) and Wolbachia (W1). Each endosymbiont showed varying rates of infection in the four cryptic species and most were co-infected with various combinations. The results of this study provide important information on the relationships between the endosymbionts and cryptic species of B. tabaci indigenous to Asia.


Co-infection Cryptic species Endosymbionts Genetic diversity Phylogenetics 



We thank Hwal-Su Hwang at Kyungpook National University in the Republic of Korea for his help with sequencing and molecular analysis. This work was supported by the Research Program for Exportation Support of Agricultural Products, Animal and Plant Quarantine Agency, in the Republic of Korea under Grant (#Z-1543086-2017-21-01).

Supplementary material

13199_2019_622_MOESM1_ESM.docx (218 kb)
ESM 1 (DOCX 218 kb)


  1. Ahmed MZ, Barro PJ, Greeff JM, Ren SX, Naveed M, Qiu BL (2011) Genetic identity of the Bemisia tabaci species complex and association with high cotton leaf curl disease (CLCuD) incidence in Pakistan. Pest Manag Sci 67:307–317CrossRefGoogle Scholar
  2. Ansari PG, Singh RK, Kaushik S, Krishna A, Wada T, Noda H (2017) Detection of symbionts and virus in the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae), a vector of the Mungbean yellow mosaic India virus in Central India. Appl Entomol Zool 52:567–579CrossRefGoogle Scholar
  3. Baumann P (2005) Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu Rev Microb 59:155–189CrossRefGoogle Scholar
  4. Bing XL, Ruan YM, Rao Q, Wang XW, Liu SS (2013a) Diversity of secondary endosymbionts among different putative species of the whitefly Bemisia tabaci. Insect Sci 20:194–206CrossRefGoogle Scholar
  5. Bing XL, Yang J, Zchori-Fein E, Wang XW, Liu SS (2013b) Characterization of a newly discovered symbiont of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae). Appl Environ Microbiol 79:569–575CrossRefGoogle Scholar
  6. Bing XL, Xia WQ, Gui JD, Yan GH, Wang XW, Liu SS (2014) Diversity and evolution of the Wolbachia endosymbionts of Bemisia tabaci (Hemiptera: Aleyrodidae) whiteflies. Ecol Evol 4:2714–2737CrossRefGoogle Scholar
  7. Cahill M, Denholm I, Bryne FJ, Al D (1996) Insecticide resistance in Bemisia tabaci- current status and implications for management. In: Proceedings of Brighton crop protection conference: Pest and diseases, vol 1, pp 75–80Google Scholar
  8. Chiel E, Gottlieb Y, Zchori-Fein E, Mozes-Daube N, Katzir N, Inbar M, Ghanim M (2007) Biotype-dependent secondary symbiont communities in sympatric populations of Bemisia tabaci. Bull Entomol Res 97:407–413CrossRefGoogle Scholar
  9. Chiel E, Inbar M, Mozes-Daube N, White JA, Hunter M, Zchori-Fein E (2009) Assessments of fitness effects by the facultative symbiont Rickettsia in the sweetpotato whitefly (Hemiptera: Aleyrodidae). Ann Entomol Soc Am 102:413–418CrossRefGoogle Scholar
  10. Chu D, Gao CS, De Barro P, Zhang YJ, Wan FH, Khan IA (2011) Further insights into the strange role of bacterial endosymbionts in whitefly, Bemisia tabaci: comparison of secondary symbionts from biotypes B and Q in China. Bull Entomol Res 101:477–486CrossRefGoogle Scholar
  11. Correa CC, Ballard J (2016) Wolbachia associations with insects: winning or losing against a master manipulator. Front Ecol Evol 3:153CrossRefGoogle Scholar
  12. Czosnek H, Ghanim M (2011) Bemisia tabaci tomato yellow leaf curl virus Interaction Causing Worldwide Epidemics. In: Thompson W (ed) The whitefly, Bemisia tabaci (Homoptera: Aleyrodidae) interaction with Geminivirus-infected host plants. Springer, DordrechtGoogle Scholar
  13. Dalton R (2006) Whitefly infestations: the Christmas invasion. Nature. 443:898–900CrossRefGoogle Scholar
  14. De Barro PJ, Liu S, Boykin LM, Dinsdale AB (2011) Bemisia tabaci: a statement of species status. Annu Rev Entomol 56:1–19CrossRefGoogle Scholar
  15. Dinsdale A, Cook L, Riginos C, Buckley YM, Barro PD (2010) Refined global analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) mitochondrial cytochrome oxidase 1 to identify species level genetic boundaries. Ann Entomol Soc Am 103:196–208CrossRefGoogle Scholar
  16. Ellango R, Singh ST, Rana VS, Priya NG, Raina H, Chaubey R, Naveen NC, Mahmood R, Ramamurthy VV, Asokan R (2015) Distribution of Bemisia tabaci genetic groups in India. Environ Entomol 44:1258–1264CrossRefGoogle Scholar
  17. Feldhaar H (2011) Bacterial symbionts as mediators of ecologically important traits of insect hosts. Ecol Entomol 36:533–543CrossRefGoogle Scholar
  18. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  19. Firdaus S, Vosman B, Hidayati N, Supena ED, Visser RG, Heusden AW (2013) The Bemisia tabaci species complex: additions from different parts of the world. Insect Sci 20:723–733CrossRefGoogle Scholar
  20. Ghosh S, Bouvaine S, Maruthi M (2015) Prevalence and genetic diversity of endosymbiotic bacteria infecting cassava whiteflies in Africa. BMC Microbiol 15:93CrossRefGoogle Scholar
  21. Gnankine O, Mouton L, Henri H, Terraz G, Houndate T, Martin T, Vavre F, Fleury F (2013) Distribution of Bemisia tabaci (Homoptera: Aleyrodidae) biotypes and their associated symbiotic bacteria on host plants in West Africa. Insect Conserv Divers 6:411–421CrossRefGoogle Scholar
  22. Gottlieb Y, Ghanim M, Chiel E, Gerling D, Portnoy V, Steinberg S, Tzuri G, Horowitz AR, Belausov E, Mozes-Daube N (2006) Identification and localization of a Rickettsia sp. in Bemisia tabaci (Homoptera: Aleyrodidae). Appl Environ Microbiol 72:3646–3652CrossRefGoogle Scholar
  23. Gottlieb Y, Ghanim M, Gueguen G, Kontsedalov S, Vavre F, Fleury F, Zchori-Fein E (2008) Inherited intracellular ecosystem: symbiotic bacteria share bacteriocytes in whiteflies. FASEB J 22:2591–2599CrossRefGoogle Scholar
  24. Gottlieb Y, Zchori-Fein E, Mozes-Daube N, Kontsedalov S, Skaljac M, Brumin M, Sobol I, Czosnek H, Vavre F, Fleury F, Ghanim M (2010) The transmission efficiency of tomato yellow leaf curl virus by the whitefly Bemisia tabaci is correlated with the presence of a specific symbiotic bacterium species. J Virol 84:9310–9317CrossRefGoogle Scholar
  25. Götz M, Winter S (2016) Diversity of Bemisia tabaci in Thailand and Vietnam and indications of species replacement. J Asia Pac Entomol 19:537–543CrossRefGoogle Scholar
  26. Gueguen G, Vavre F, Gnankine O, Peterschmitt M, Charif D, Chiel E, Gottlieb Y, Ghanim M, Zchori-Fein E, Fleury F (2010) Endosymbiont metacommunities, mtDNA diversity and the evolution of the Bemisia tabaci (Hemiptera: Aleyrodidae) species complex. Mol Ecol 19:4365–4376CrossRefGoogle Scholar
  27. Hameed S, Hameed S, Sadia M, Malik SA (2012) Genetic diversity analysis of Bemisia tabaci populations in Pakistan using RAPD markers. Electron J Biotechnol 15Google Scholar
  28. Hashmi TR, Devi SR, Meshram NM, Prasad R (2018) Assessment of bacterial endosymbiont and the host Bemisia tabaci (Hemiptera: Aleyrodidae), using rRNA and mitochondrial cytochrome oxidase I gene sequences. Commun Integr Biol 11:e1433442CrossRefGoogle Scholar
  29. Himler AG, Adachi-Hagimori T, Bergen JE, Kozuch A, Kelly SE, Tabashnik BE, Chiel E, Duckworth VE, Dennehy TJ, Zchori-Fein E, Hunter MS (2011) Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias. Science 332:254–256CrossRefGoogle Scholar
  30. Horowitz AR, Kontsedalov S, Khasdan V, Ishaaya I (2005) Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Arch Insect Biochem Physiol 58:216–225CrossRefGoogle Scholar
  31. Hu J, Chen YD, Jiang ZL, Nardi F, Yang TY, Jin J, Zhang ZK (2015) Global haplotype analysis of the whitefly Bemisia tabaci cryptic species Asia I in Asia. Mito DNA 26:232–241CrossRefGoogle Scholar
  32. Hu J, Zhang X, Jiang Z, Zhang F, Liu Y, Li Z, Zhang Z (2017) New putative cryptic species detection and genetic network analysis of Bemisia tabaci (Hemiptera: Aleyrodidae) in China based on mitochondrial COI sequences. Mito DNA Part A 29:474–484CrossRefGoogle Scholar
  33. Hunter MS, Perlman SJ, Kelly SE (2003) A bacterial symbiont in the Bacteroidetes induces cytoplasmic incompatibility in the parasitoid wasp Encarsia pergandiella. Proc Biol Sci 270:2185–2190CrossRefGoogle Scholar
  34. Jiu M, Hu J, Wang LJ, Dong JF, Song YQ, Sun HZ (2017) Cryptic species identification and composition of Bemisia tabaci (Hemiptera: Aleyrodidae) complex in Henan Province, China. J Insect Sci 17:1–7CrossRefGoogle Scholar
  35. Jones DR (2003) Plant viruses transmitted by whiteflies. Eur J Plant Pathol 109:195–219CrossRefGoogle Scholar
  36. Kaiser W, Huguet E, Casas J, Commin C, Giron D (2010) Plant green-island phenotype induced by leaf-miners are mediated by bacterial symbionts. Proc Biol Sci 277:2311–2319CrossRefGoogle Scholar
  37. Khatun MF, Jahan SMH, Lee S, Lee KY (2018) Genetic diversity and geographic distribution of the Bemisia tabaci species complex in Bangladesh. Acta Trop 187:28–36CrossRefGoogle Scholar
  38. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefGoogle Scholar
  39. Kontsedalov S, Zchori-Fein E, Chiel E, Gottlieb Y, Inbar M, Ghanim M (2008) The presence of Rickettsia is associated with increased susceptibility of Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides. Pest Manag Sci 64:789–792CrossRefGoogle Scholar
  40. Kumar NR, Chang JC, Narayanan MB, Ramasamy S (2016) Phylogeographical structure in mitochondrial DNA of whitefly, Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) in southern India and Southeast Asia. Mito DNA Part A 28:621–631CrossRefGoogle Scholar
  41. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinfo 25:1451–1452CrossRefGoogle Scholar
  42. Liu SS, De Barro PJ, Xu J, Luan JB, Zang LS, Ruan YM, Wan FH (2007) Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Science 318:1769–1772CrossRefGoogle Scholar
  43. Marubayashi JM, Kliot A, Yuki VA, Rezende JAM, Krause-Sakate R, Pavan MA, Ghanim M (2014) Diversity and localization of bacterial endosymbionts from whitefly species collected in Brazil. PLoS One 9:e108363CrossRefGoogle Scholar
  44. Montllor CB, Maxmen A, Purcell AH (2002) Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol Entomol 27:189–195CrossRefGoogle Scholar
  45. Nirgianaki A, Banks GK, Frohlich DR, Veneti Z, Braig HR, Miller TA, Bedford ID, Markham PG, Savakis C, Bourtzis K (2003) Wolbachia infections of the whitefly Bemisia tabaci. Curr Microbiol 47:93–101CrossRefGoogle Scholar
  46. Oliver KM, Russell JA, Moran NA, Hunter MS (2003) Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci U S A 100:1803–1807CrossRefGoogle Scholar
  47. Pan H, Li X, Ge D, Wang S, Wu Q, Xie W, Jiao X, Chu D, Liu B, Xu B, Zhang Y (2012) Factors affecting population dynamics of maternally transmitted endosymbionts in Bemisia tabaci. PLoS One 7:e30760CrossRefGoogle Scholar
  48. Park J, Jahan SMH, Song WG, Lee H, Lee YS, Choi HS, Lee KS, Kim CS, Lee S, Lee KY (2012) Identification of biotypes and secondary endosymbionts of Bemisia tabaci in Korea and relationships with the occurrence of TYLCV disease. J Asia Pac Entomol 15:186–191CrossRefGoogle Scholar
  49. Pascual S, Callejas C (2004) Intra and interspecific competition between biotypes B and Q of Bemisia tabaci (Hemiptera: Aleyrodidae) from Spain. Bull Entomol Res 94:369–375CrossRefGoogle Scholar
  50. Prasanna HC, Kanakala S, Archana K, Jyothsna P, Varma RK, Malathi VG (2015) Cryptic species composition and genetic diversity within Bemisia tabaci complex in soybean in India revealed by mtCOI DNA sequence. J Integr Agr 14:1786–1795CrossRefGoogle Scholar
  51. Rao Q, Wang S, Su YL, Bing XL, Liu SS, Wang XW (2012) Draft genome sequence of “candidatus Hamiltonella defensa,” an endosymbiont of the whitefly Bemisia tabaci. J Bacteriol 194:3558CrossRefGoogle Scholar
  52. Rosell RC, Blackmer JL, Czosnek H, Inbar M (2010) In: Stansly PA, Naranjos SE (eds) Bemisia: Bionomics and Management of a Global PestMutualistic and dependent relationships with other organisms. Springer, Netherlands, pp 161–183Google Scholar
  53. Schaffer AA, Aravind L, Madden TL, Shavirin S, Spouge JL, Wolf YI, Koonin EV, Altschul SF (2001) Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res 29:2994–3005CrossRefGoogle Scholar
  54. Shah SHJ, Malik AH, Qazi J (2013) Identification of new genetic variant of Bemisia tabaci from Pakistan. Int J Entomol Res 1:16–24Google Scholar
  55. Singh ST, Priya NG, Kumar J, Rana VS, Ellango R, Joshi A, Priyadarshini G, Asokan R, Rajagopal R (2012) Diversity and phylogenetic analysis of endosymbiotic bacteria from field caught Bemisia tabaci from different locations of North India based on 16S r DNA library screening. Infect Genet Evol 12:411–419CrossRefGoogle Scholar
  56. Sintupachee S, Milne JR, Poonchaisri S, Baimai V, Kittayapong P (2006) Closely related Wolbachia strains within the pumpkin arthropod community and the potential for horizontal transmission via the plant. Microb Ecol 51:294–301CrossRefGoogle Scholar
  57. Skaljac M, Zanic K, Ban SG, Kontsedalov S, Ghanim M (2010) Co-infection and localization of secondary symbionts in two whitefly species. BMC Microbiol 10:142CrossRefGoogle Scholar
  58. Skaljac M, Zanic K, Hrncic S, Radonjic S, Perovic T, Ghanim M (2013) Diversity and localization of bacterial symbionts in three whitefly species (Hemiptera: Aleyrodidae) from the east coast of the Adriatic Sea. Bull Entomol Res 103:48–59CrossRefGoogle Scholar
  59. Skaljac M, Kanakala S, Zanic K, Puizina J, Pleic IL, Ghanim M (2017) Diversity and phylogenetic analyses of bacterial symbionts in three whitefly species from Southeast Europe. Insects 8:113CrossRefGoogle Scholar
  60. Tajima F (1989) A statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595Google Scholar
  61. Tang XT, Cai L, Shen Y, Du YZ (2018) Diversity and evolution of the endosymbionts of Bemisia tabaci in China. PeerJ 6:e5516CrossRefGoogle Scholar
  62. Thao ML, Baumann P (2004) Evidence for multiple acquisitions of Arsenophonus by whitefly species (Sternorrhyncha: Aleyrodidae). Curr Microbiol 48:140–144CrossRefGoogle Scholar
  63. Thierry M, Becker N, Hajri A, Lett JM, Reynaud B, Delatte H (2011) Symbiont diversity and non-random hybridization among indigenous (Ms) and invasive (B) biotypes of Bemisia tabaci. Mol Ecol 20:2172–2187CrossRefGoogle Scholar
  64. Tsuchida T, Koga R, Fukatsu T (2004) Host plant specialization governed by facultative symbiont. Science 303:1989CrossRefGoogle Scholar
  65. Weeks AR, Velten R, Stouthamer R (2003) Incidence of a new sex-ratio-distorting endosymbiotic bacterium among arthropods. Proc Biol Sci 270:1857–1865Google Scholar
  66. Zchori-Fein E, Brown JK (2002) Diversity of prokaryotes associated with Bemisia tabaci (Gennadius) (Hemiptera; Aleyrodidae). Ann Entomol Soc Am 95:711–718Google Scholar
  67. Zchori-Fein E, Perlman SJ (2004) Distribution of the bacterial symbiont Cardinium in arthropods. Mol Ecol 13:2009–2016CrossRefGoogle Scholar
  68. Zchori-Fein E, Gottlieb Y, Kelly SE, Brown JK, Wilson JM, Karr TL, Hunter MS (2001) A newly discovered bacterium associated with parthenogenesis and a change in host selection behavior in parasitoid wasps. Proc Natl Acad Sci U S A 98:12555–12560CrossRefGoogle Scholar
  69. Zchori-Fein E, Lahav T, Freilich S (2014) Variations in the identity and complexity of endosymbiont combinations in whitefly hosts. Front Microbiol 5:1–8CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Division of Applied Biosciences, College of Agriculture and Life SciencesKyungpook National UniversityDaeguRepublic of Korea
  2. 2.Department of EntomologyBangabandhu Sheikh Mujibur Rahman Agricultural UniversityDhakaBangladesh
  3. 3.Institute of Agricultural Science and TechnologyKyungpook National UniversityDaeguRepublic of Korea
  4. 4.Institute of Plant MedicineKyungpook National UniversityDaeguRepublic of Korea

Personalised recommendations