Advertisement

Symbiosis

, Volume 79, Issue 1, pp 33–48 | Cite as

Molecular and biochemical changes of aging-induced nodules senescence in common bean

  • Helder Anderson Pinto da Silva
  • Vanessa Santana Caetano
  • Daniella Duarte Villarinho Pessoa
  • Rafael Sanches Pacheco
  • Jean Luiz Simoes-AraujoEmail author
Article
  • 126 Downloads

Abstract

In the common bean (Phaseolus vulgaris L.), premature nodule senescence affects biological nitrogen fixation (BNF), reducing crop yield. Here, we investigated the molecular and biochemical changes in common bean nodules undergoing aging senescence. The experiments were carried out with three common bean genotypes and two nodule groups: senescent and non-senescent nodules. The expression patterns of 12 genes were assessed using RT-qPCR. In addition, global activities of ascorbate peroxidase (APX) and catalase (CAT), lipid peroxidation and total sugar content of nodules were also determined. Our results show that PvLb gene expression was down-regulated and PvGS(n-1) and PvUriII, genes involved in N metabolism, also decreased in senescent nodules. Transcripts related to the ethylene, abscisic acid and cytokinin phytohormones were up-regulated upon nodule senescence. Interestingly, PvSnakin-2 (SNAKIN-like cysteine rich protein), a gene related to plant-pathogen interaction, was induced in senescent nodules. The biochemical assays showed that in nodules undergoing senescence, APX activity was altered in only one genotype but CAT activity decreased in all common bean genotypes. Lipid peroxidation increased but total sugar content was not altered in nodules upon senescence. All these findings suggest that a delayed plant-response to Rhizobium infection is activated in common bean nodules undergoing aging senescence and this mechanism seems to be regulated by phytohormones and cell signaling as well, whereas the antioxidant defenses mediated by CAT are repressed, suggesting oxidative damage in nodules upon senescence. Our results offer insights into understanding nodule senescence metabolism and provide potential senescence markers for common bean nodules.

Keywords

Biological nitrogen fixation Nodule senescence Phaseolus vulgaris Root-nodule RT-qPCR 

Notes

Acknowledgements

We would like to thanks Dr. Marcio Alves-Ferreira (Depto Genética, UFRJ), Dr. Luc Rows (Lab. de Ecologia Molecular Microbiana, Embrapa Agobiologia) and Dr. Sonia Regina de Souza (in memoriam) for helpful discussions and suggestions to improve the manuscript. This work was supported by Empresa Brasileira de Pesquisa Agropecuária (Embrapa); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Supplementary material

13199_2019_618_MOESM1_ESM.pdf (202 kb)
ESM 1 (PDF 202 kb)
13199_2019_618_MOESM2_ESM.pdf (45 kb)
ESM 2 (PDF 45 kb)

References

  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402.  https://doi.org/10.1093/nar/25.17.3389 CrossRefGoogle Scholar
  2. Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250.  https://doi.org/10.1158/0008-5472.CAN-04-0496 CrossRefGoogle Scholar
  3. Arthikala M-K, Montiel J, Sánchez-López R, Nava N, Cárdenas L, Quinto C (2017) Respiratory burst oxidase homolog gene a is crucial for rhizobium infection and nodule maturation and function in common bean. Front Plant Sci 8(2003).  https://doi.org/10.3389/fpls.2017.02003
  4. Azevedo RA, Alas RM, Smith RJ, Lea PJ (1998) Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley. Physiol Plant 104:280–292.  https://doi.org/10.1034/j.1399-3054.1998.1040217.x CrossRefGoogle Scholar
  5. Baral B, da Silva JAT, Izaguirre-Mayoral ML (2016) Early signaling, synthesis, transport and metabolism of ureides. J Plant Physiol 193:97–109.  https://doi.org/10.1016/j.jplph.2016.01.013 CrossRefGoogle Scholar
  6. Becana M, Matamoros MA, Udvardi M, Dalton DA (2010) Recent insights into antioxidant defenses of legume root nodules. New Phytol 188:960–976.  https://doi.org/10.1111/j.1469-8137.2010.03512.x CrossRefGoogle Scholar
  7. Becher M, Schepl U, Schubert S (1997) N2 fixation during different physiological stages of Phaseolus vulgaris OAC Rico and its supernodulating mutant R32BS15: the role of assimilate supply to and export from nodules. J Plant Physiol 150:31–36.  https://doi.org/10.1016/S0176-1617(97)80177-0 CrossRefGoogle Scholar
  8. Bennett M, Lightfoot D, Cullimore J (1989) cDNA sequence and differential expression of the gene encoding the glutamine synthetase γ polypeptide of Phaseolus vulgaris L. Plant Mol Biol 12:553–565.  https://doi.org/10.1007/BF00036969 CrossRefGoogle Scholar
  9. Berrocal-Lobo M, Segura A, Moreno M, Lopez G, Garcia-Olmedo F, Molina A (2002) Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection. Plant Physiol 128:951–961.  https://doi.org/10.1104/pp.010685 CrossRefGoogle Scholar
  10. Bindschedler LV, Whitelegge JP, Millar DJ, Bolwell GP (2006) A two component chitin-binding protein from French bean-association of a proline-rich protein with a cysteine-rich polypeptide. FEBS Lett 580:1541–1546.  https://doi.org/10.1016/j.febslet.2006.01.079 CrossRefGoogle Scholar
  11. Boivin S, Kazmierczak T, Brault M, Wen J, Gamas P, Mysore KS, Frugier F (2016) Different cytokinin histidine kinase receptors regulate nodule initiation as well as later nodule developmental stages in Medicago truncatula. Plant Cell Environ 39:2198–2209.  https://doi.org/10.1111/pce.12779 CrossRefGoogle Scholar
  12. Bolwell GP (1986) Microsomal arabinosylation of polysaccharide and elicitor-induced carbohydrate-binding glycoprotein in French bean. Phytochem 25:1807–1813.  https://doi.org/10.1016/S0031-9422(00)81153-X CrossRefGoogle Scholar
  13. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254.  https://doi.org/10.1016/0003-2697(76)90527-3 CrossRefGoogle Scholar
  14. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. In: Fleisher S, Packer L (eds) Methods in enzymology. Academic Press, New York, pp 302–310Google Scholar
  15. Capote-Maínez N, Sánchez F (1997) Characterization of the common bean uricase II and its expression in organs other than nodules. Plant Physiol 115:1307–1317.  https://doi.org/10.1104/pp.115.4.1307 CrossRefGoogle Scholar
  16. Chungopast S, Thapanapongworakul P, Matsuura H, Van Dao T, Asahi T, Tada K, Tajima S, Nomura M (2014) Glutamine synthetase I-deficiency in Mesorhizobium loti differentially affects nodule development and activity in Lotus japonicus. J Plant Physiol 171:104–108.  https://doi.org/10.1016/j.jplph.2013.10.015 CrossRefGoogle Scholar
  17. CIAT (2002) Annual Report, 2002. ProjectIP-1 bean improvement for the tropics. CIAT, Cali, pp 8–10Google Scholar
  18. Coba de la Peña T, Cárcamo CB, Almonacid L, Zaballos A, Lucas MM, Balomenos D, Pueyo JJ (2008) A cytokinin receptor homologue is induced during root nodule organogenesis and senescence in Lupinus albus L. Plant Physiol Biochem 46:219–225.  https://doi.org/10.1016/j.plaphy.2007.10.021 CrossRefGoogle Scholar
  19. Ding Y, Kalo P, Yendrek C, Sun J, Liang Y, Marsh JF, Harris JM, Oldroyd GED (2008) Abscisic acid coordinates nod factor and cytokinin signaling during the regulation of nodulation in Medicago truncatula. Plant Cell 20:2681–2695.  https://doi.org/10.1105/tpc.108.061739 CrossRefGoogle Scholar
  20. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356.  https://doi.org/10.1021/ac60111a017 CrossRefGoogle Scholar
  21. Evans PJ, Gallesi D, Mathieu C, Hernandez MJ, de Felipe M, Halliwell B, Puppo A (1999) Oxidative stress occurs during soybean nodule senescence. Planta 208:73–79.  https://doi.org/10.1007/s004250050536 CrossRefGoogle Scholar
  22. Fei H, Vessey JK (2009) Stimulation of nodulation in Medicago truncatula by low concentrations of ammonium: quantitative reverse transcription PCR analysis of selected genes. Physiol Plant 135:317–330.  https://doi.org/10.1111/j.1399-3054.2008.01192.x CrossRefGoogle Scholar
  23. Fernández-Luqueño F, Dendooven L, Munive A, Corlay-Chee L, Serrano-Covarrubias LM, Espinosa-Victoria D (2008) Micro-morphology of common bean (Phaseolus vulgaris L.) nodules undergoing senescence. Acta Physiol Plant 30:545–552.  https://doi.org/10.1007/s11738-008-0153-7 CrossRefGoogle Scholar
  24. Fred EB, Waksman SA (1928) Yeast extract-mannitol agar for laboratory manual of general microbiology. McGraw Hill, New York 145pGoogle Scholar
  25. García AN, Ayub ND, Fox AR, Gomez MC, Dieguez MJ, Pagano EM, Berini CA, Muschietti JP, Soto G (2014) Alfalfa snakin-1 prevents fungal colonization and probably coevolved with rhizobia. BMC Plant Biol 14(248).  https://doi.org/10.1186/s12870-014-0248-9
  26. González EM, Galvez L, Arrese-Igor C (2001) Abscisic acid induces a decline in nitrogen fixation that involves leghaemoglobin, but is independent of sucrose synthase activity. J Exp Bot 52:285–293.  https://doi.org/10.1093/jxb/52.355.285 CrossRefGoogle Scholar
  27. Gonzalez-Rizzo S, Crespi M, Frugier F (2006) The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell 18:2680–2693.  https://doi.org/10.1105/tpc.106.043778 CrossRefGoogle Scholar
  28. Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186.  https://doi.org/10.1093/nar/gkr944 CrossRefGoogle Scholar
  29. Guinel FC (2015) Ethylene, a hormone at the center-stage of nodulation. Front Plant Sci 6(1121).  https://doi.org/10.3389/fpls.2015.01121
  30. Günther C, Schlereth A, Udvardi M, Ott T (2007) Metabolism of reactive oxygen species is attenuated in leghemoglobin-deficient nodules of Lotus japonicus. Mol Plant-Microbe Interact 20:1596–1603.  https://doi.org/10.1094/MPMI-20-12-1596 CrossRefGoogle Scholar
  31. Hajouj T, Michelis R, Gepstein S (2000) Cloning and characterization of a receptor-like protein kinase gene associated with senescence. Plant Physiol 124:1305–1314.  https://doi.org/10.1104/pp.124.3.1305 CrossRefGoogle Scholar
  32. Heckmann AB, Sandal N, Bek AS, Madsen LH, Jurkiewicz A, Nielsen MW, Tirichine L, Stougaard J (2011) Cytokinin induction of root nodule primordia in Lotus japonicus is regulated by a mechanism operating in the root cortex. Mol Plant-Microbe Interact 24:1385–1395.  https://doi.org/10.1094/MPMI-05-11-0142 CrossRefGoogle Scholar
  33. Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19.  https://doi.org/10.1186/gb-2007-8-2-r19 CrossRefGoogle Scholar
  34. Henson R, Pereira P, Carneiro J, Bliss F (1993) Registration of “Ouro negro” a high nitrogen-fixing high-yielding common bean. variety Crop Sci 33:644.  https://doi.org/10.2135/cropsci1993.0011183X003300030044x CrossRefGoogle Scholar
  35. Herbel V, Sieber-Frank J, Wink M (2017) The antimicrobial peptide snakin-2 is upregulated in the defense response of tomatoes (Solanum lycopersicum) as part of the jasmonate-dependent signaling pathway. J Plant Physiol 208:1–6.  https://doi.org/10.1016/j.jplph.2016.10.006 CrossRefGoogle Scholar
  36. Hernández-Jiménez MJ, Mercedes Lucas M, de Felipe MR (2002) Antioxidant defence and damage in senescing lupin nodules. Plant Physiol Biochem 40:645–657.  https://doi.org/10.1016/S0981-9428(02)01422-5 CrossRefGoogle Scholar
  37. Hungria M, Kaschuk G (2014) Regulation of N2 fixation and NO3 /NH4 + assimilation in nodulated and N-fertilized Phaseolus vulgaris L. exposed to high temperature stress. Environ Exp Bot 98:32–39.  https://doi.org/10.1016/j.envexpbot.2013.10.010 CrossRefGoogle Scholar
  38. Hungria M, Andrade DS, Chueire LMO, Probanza A, Guttierrez-Mañero FJ, Megías M (2000) Isolation and characterization of new efficient and competitive bean (Phaseolus vulgaris L.) rhizobia from Brazil. Soil Biol Biochem 32:1515–1528.  https://doi.org/10.1016/S0038-0717(00)00063-8 CrossRefGoogle Scholar
  39. Krishnan HB, Song B, Oehrle NW, Cameron JC, Jez JM (2018) Impact of overexpression of cytosolic isoform of O-acetylserine sulhydrylase on soybean nodulation and nodule metabolome. Sci Rep 8(2367).  https://doi.org/10.1038/s41598-018-20919-8
  40. Lara M, Cullimore JV, Lea PJ, Miflin BJ, Johnston AWB, Lamb JW (1983) Appearance of a novel form of plant glutamine synthetase during nodule development in Phaseolus vulgaris L. Planta 157:254–258.  https://doi.org/10.1007/BF00405190 CrossRefGoogle Scholar
  41. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948.  https://doi.org/10.1093/bioinformatics/btm404 CrossRefGoogle Scholar
  42. Li XP, Gan R, Li PL, Ma YY, Zhang LW, Zhang R, Wang Y, Wang NN (2006) Identification and functional characterization of a leucine-rich repeat receptor-like kinase gene that is involved in regulation of soybean leaf senescence. Plant Mol Biol 61:829–844.  https://doi.org/10.1007/s11103-006-0052-5 CrossRefGoogle Scholar
  43. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 (−Delta Delta C(T)) method. Methods 25:402–408.  https://doi.org/10.1006/meth.2001.1262 CrossRefGoogle Scholar
  44. López SMY, Sánchez MDM, Pastorino GN, Franco MEE, García NT, Balatti PA (2018) Nodulation and delayed nodule senescence: strategies of two Bradyrhizobium japonicum isolates with high capacity to fix nitrogen. Curr Microbiol 75:997.  https://doi.org/10.1007/s00284-018-1478-0 CrossRefGoogle Scholar
  45. Loscos J, Matamoros MA, Becana M (2008) Ascorbate and homoglutathione metabolism in common bean nodules under stress conditions and during natural senescence. Plant Physiol 146:1282–1292.  https://doi.org/10.1104/pp.107.114066 CrossRefGoogle Scholar
  46. Martínez-Romero E, Segovia L, Mercante FM, Franco AA, Graham PH, Pardo MA (1991) Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int J Syst Bacteriol 41:417–426.  https://doi.org/10.1099/00207713-41-3-417
  47. Masson-Boivin C, Sachs JL (2018) Symbiotic nitrogen fixation by rhizobia: the roots of a success story. Curr Opin Plant Biol 44:7–15.  https://doi.org/10.1016/j.pbi.2017.12.001 CrossRefGoogle Scholar
  48. Matamoros MA, Baird LM, Escuredo PR, Dalton DA, Minchin FR, Iturbe-Ormaetxe I, Rubio MC, Moran JF, Gordon AJ, Becana M (1999) Stress-induced legume root nodule senescence. Physiological, biochemical, and structural alterations. Plant Physiol 121:97–112.  https://doi.org/10.1104/pp.121.1.97 CrossRefGoogle Scholar
  49. Matamoros MA, Dalton DA, Ramos J, Clemente MR, Rubio MC, Becana M (2003) Biochemistry and molecular biology of antioxidants in the rhizobia-legume symbiosis. Plant Physiol 133:499–509.  https://doi.org/10.1104/pp.103.025619 CrossRefGoogle Scholar
  50. Mhadhbi H, Djebali N, Chihaoui S, Jebara M, Ridha M (2011) Nodule senescence in Medicago truncatula-Sinorhizobium symbiosis under abiotic constraints: biochemical and structural processes involved in maintaining nitrogen-fixing capacity. J Plant Growth Regul 30:480–489.  https://doi.org/10.1007/s00344-011-9210-3 CrossRefGoogle Scholar
  51. Mora-Romero GA, González-Ortíz MA, Quiroz-Figueroa F, Calderón-Vázquez CL, Medina-Godoy S, Maldonado-Mendoza I et al (2015) PvLOX2 silencing in common bean roots impairs arbuscular mycorrhiza-induced resistance without affecting symbiosis establishment. Funct Plant Biol 42:18–30.  https://doi.org/10.1071/FP14101 CrossRefGoogle Scholar
  52. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880.  https://doi.org/10.1093/oxfordjournals.pcp.a076232 Google Scholar
  53. Nascimento FX, Rossi MJ, Glick BR (2018) Ethylene and 1-aminocyclopropane-1-carboxylate (ACC) in plant-bacterial interactions. Front Plant Sci 9:114.  https://doi.org/10.3389/fpls.2018.00114 CrossRefGoogle Scholar
  54. Norris DO, Date RA (1976) Legume bacteriology. In: Sham NH, Bryan WW (Ed.). Tropical pasture research: principles and methods. Hurley: commonwealth Bureau of Pastures and Field Crops, p.134–174. (commonwealth Bureau of Pastures and Field Crops. Bulletin, 51)Google Scholar
  55. Ott T, van Dongen JT, Günther C, Krusell L, Desbrosses G, Vigeolas H, Bock V, Czechowski T, Geigenberger P, Udvardi MK (2005) Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development. Curr Biol 15:531–535.  https://doi.org/10.1016/j.cub.2005.01.042 CrossRefGoogle Scholar
  56. Papadopoulou K, Roussis A, Kuin H, Katinakis P (1995) Expression pattern of uricase II gene during root nodule development in Phaseolus vulgaris. Experientia 51:90–94.  https://doi.org/10.1007/BF01964927 CrossRefGoogle Scholar
  57. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36CrossRefGoogle Scholar
  58. Plet J, Wasson A, Ariel F, Le Signor C, Baker D, Mathesius U, Crespi M, Frugier F (2011) MtCRE1-dependent cytokinin signaling integrates bacterial and plant cues to coordinate symbiotic nodule organogenesis in Medicago truncatula. Plant J 65:622–633.  https://doi.org/10.1111/j.1365-313X.2010.04447.x CrossRefGoogle Scholar
  59. Porta H, Rocha-Sosa M (2000) A Phaseolus vulgaris lipoxygenase gene expressed in nodules and in Rhizobium tropici inoculated roots. Biochim Biophys Acta 1517:139–142.  https://doi.org/10.1016/S0167-4781(00)00230-X CrossRefGoogle Scholar
  60. Porta H, Rocha-Sosa M (2002) Plant lipoxygenases. Physiological and molecular features. Plant Physiol 130:15–21.  https://doi.org/10.1104/pp.010787 CrossRefGoogle Scholar
  61. Porta H, Rueda-Benítez P, Campos F, Colmenero-Flores JM, Colorado JM, Carmona MJ, Covarrubias AA, Rocha-Sosa M (1999) Analysis of lipoxygenase mRNA accumulation in the common bean (Phaseolus vulgaris L.) during development and under stress conditions. Plant Cell Physiol 40:850–858.  https://doi.org/10.1093/oxfordjournals.pcp.a029614 CrossRefGoogle Scholar
  62. Puppo A, Groten K, Bastian F, Carzaniga R, Soussi M, Lucas MM, de Felipe MR, Harrison J, Vanacker H, Foyer CH (2005) Legume nodule senescence: roles for redox and hormone signalling in the orchestration of the natural aging process. New Phytol 165:683–701.  https://doi.org/10.1111/j.1469-8137.2004.01285.x CrossRefGoogle Scholar
  63. Ragueh F, Lescure N, Roby D, Marco Y (1989) Gene expression in Nicotiana tabacum in response to compatible and incompatible isolates of Pseudomonas solanacearum. Physiol Mol Plant Pathol 35:23–33.  https://doi.org/10.1016/0885-5765(89)90004-0 CrossRefGoogle Scholar
  64. Sainz M, Calvo-Begueria L, Pérez-Rontomé C, Wienkoop S, Abián J, Staudinger C, Bartesaghi S, Radi R, Becana M (2015) Leghemoglobin is nitrated in functional legume nodules in a tyrosine residue within the heme cavity by a nitrite/peroxide-dependent mechanism. Plant J 81:723–735.  https://doi.org/10.1111/tpj.12762 CrossRefGoogle Scholar
  65. Sánchez F, Campos F, Padilla J, Bonneville JM, Enríquez C, Caput D (1987) Purification, cDNA cloning, and developmental expression of the nodule-specific uricase from Phaseolus vulgaris L. Plant Physiol 84:1143–1147.  https://doi.org/10.1104/pp.84.4.1143 CrossRefGoogle Scholar
  66. Serova TA, Tikhonovich IA, Tsyganov VE (2017) Analysis of nodule senescence in pea (Pisum sativum L.) using laser microdissection, real-time PCR, and ACC immunolocalization. J Plant Physiol 212:29–44.  https://doi.org/10.1016/j.jplph.2017.01.012 CrossRefGoogle Scholar
  67. Serova TA, Tsyganova AV, Tsyganov VE (2018) Early nodule senescence is activated in symbiotic mutants of pea (Pisum sativum L.) forming ineffective nodules blocked at different nodule developmental stages. Protoplasma.  https://doi.org/10.1007/s00709-018-1246-9
  68. Sheokand S, Swaraj K (1996) Natural and dark-induced nodule senescence in chickpea: nodule functioning and H2O2 scavenging enzymes. Biol Plant 38:545–554.  https://doi.org/10.1007/BF02890605 CrossRefGoogle Scholar
  69. Simões-Araújo JL, Rumjanek NG, Margis-Pinheiro M (2003) Small heat shock proteins genes are differentially expressed in distinct varieties of common bean. Braz J Plant Physiol 15:33–41.  https://doi.org/10.1590/S1677-04202003000100005 CrossRefGoogle Scholar
  70. Stat Soft Inc (2004) Statistica - data analysis software system, version 7. Available on http://www.statsoft.com. Accessed 25 Jan 2018
  71. Strodtman KN, Stevenson SE, Waters JK, Mawhinney TP, Thelen JJ, Polacco JC, Emerich DW (2017) The bacteroid periplasm in soybean nodules is an interkingdom symbiotic space. Mol Microbe Plant Interact 30:997–1008.  https://doi.org/10.1094/MPMI-12-16-0264-R CrossRefGoogle Scholar
  72. Tam JP, Wang S, Wong KH, Tan WL (2015) Antimicrobial peptides from plants. Pharmaceuticals 8:711–757.  https://doi.org/10.1080/07352689709701952 CrossRefGoogle Scholar
  73. Tavares MJ, Nascimento FX, Glick BR, Rossi MJ (2018) The expression of an exogenous ACC deaminase by the endophyte Serratia grimesii BXF1 promotes the early nodulation and growth of common bean. Lett Appl Microbiol 66:252–259.  https://doi.org/10.1111/lam.12847 CrossRefGoogle Scholar
  74. Tirichine L, Sandal N, Madsen LH, Radutoiu S, Albrektsen AS, Sato S, Asamizu E, Tabata S, Stougaard J (2007) A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science 315:104–107.  https://doi.org/10.1126/science.1132397 CrossRefGoogle Scholar
  75. Tittabutr P, Sripakdi S, Boonkerd N, Tanthanuch W, Minamisawa K, Teaumroong N (2015) Possible role of 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity of Sinorhizobium sp. BL3 on symbiosis with mung bean and determinate nodule senescence. Microbes Environ 30:310–320.  https://doi.org/10.1264/jsme2.ME15120 CrossRefGoogle Scholar
  76. Tominaga A, Nagata M, Futsuki K, Abe H, Uchiumi T, Abe M, Kucho K, Hashiguchi M, Akashi R, Hirsch A, Arima S, Suzuki A (2010) Effect of abscisic acid on symbiotic nitrogen fixation activity in the root nodules of Lotus japonicus. Plant Signal Behav 5:440–443.  https://doi.org/10.4161/psb.5.4.10849 CrossRefGoogle Scholar
  77. Tsikou D, Kalloniati C, Fotelli MN, Nikolopoulos D, Katinakis P, Udvardi MK, Rennenberg H, Flemetakis E (2013) Cessation of photosynthesis in Lotus japonicus leaves leads to reprogramming of nodule metabolism. J Exp Bot 64:1317–1332.  https://doi.org/10.1093/jxb/ert015 CrossRefGoogle Scholar
  78. Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35 (web server issue) W71–74.  https://doi.org/10.1093/nar/gkm306
  79. Van de Velde W, Guerra JCP, De Keyser A, De Rycke R, Rombauts S, Maunoury N, Mergaert P, Kondorosi E, Holsters M, Goormachtig S (2006) Aging in legume symbiosis. A molecular view on nodule senescence in Medicago truncatula. Plant Physiol 141:711–720.  https://doi.org/10.1104/pp.106.078691 CrossRefGoogle Scholar
  80. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034.  https://doi.org/10.1186/gb-2002-3-7-research0034 CrossRefGoogle Scholar
  81. Webb CJ, Chan-Weiher C, Johnson DA (2008) Isolation of a novel family of genes related to 2-oxoglutarate-dependent dioxygenases from soybean and analysis of their expression during root nodule senescence. J Plant Physiol 165:1736–1744.  https://doi.org/10.1016/j.jplph.2007.10.004 CrossRefGoogle Scholar
  82. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden T (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinf 13(134).  https://doi.org/10.1186/1471-2105-13-134
  83. Zhao S, Fernald RD (2005) Comprehensive algorithm for quantitative real-time polymerase chain reaction. J Comput Biol 12:1047–1064.  https://doi.org/10.1089/cmb.2005.12.1047 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Programa de Pós-Graduação em Biotecnologia VegetalUniversidade Federal do Rio de Janeiro – UFRJRio de JaneiroBrazil
  2. 2.Laboratório de Genética e Bioquímica - Embrapa, Centro Nacional de Pesquisa de AgrobiologiaSeropédicaBrazil
  3. 3.Programa de Pós-graduação em Fitossanidade e Biotecnologia AplicadaUniversidade Federal Rural do Rio de Janeiro – UFRRJSeropédicaBrazil

Personalised recommendations