Advertisement

Symbiosis

pp 1–12 | Cite as

Wheat landraces with low mycorrhizing ability at field respond differently to inoculation with artificial or indigenous arbuscular mycorrhizal fungal communities

  • O. Essiane-Ondo
  • Jérémie Zerbib
  • S. Gianinazzi
  • D. Wipf
Article
  • 47 Downloads

Abstract

Conventional farming is not sustainable in a context of climate change and of dramatic reductions in natural resource stocks worldwide. A change of paradigm towards more sustainable farming is necessary, based on the preservation and management of ecosystem services. The soil is a reservoir of organisms beneficial for plant production. Among these are arbuscular mycorrhizal fungi. Nevertheless, the response of plants – especially cereal landraces – to mycorrhization, and the effect of domestication on the response to mycorrhization are controversial. In the present paper we investigated the response of four wheat landraces with a low mycorrhizogenous ability to inoculation with the indigenous arbuscular mycorrhizal fungi community or an artificial community in greenhouse and field conditions. We showed that the community of arbuscular mycorrhizal fungi can have an effect on yield, even in wheat landraces with a low mycorrhizogenous ability. We also highlighted the importance to properly choose the criteria (phenotypic criteria as root and shoot biomasses versus quality criteria as grain quality) used to measure this possible gain.

Keywords

Arbuscular mycorrhiza Sustainable farming Landrace Wheat Crop production Symbiosis 

Notes

Acknowledgements

The authors are very grateful to Graines de Noé seed society for providing landrace seeds as well as to B. Ronot for his accurate advices. OEO is thankful to Agence nationale des Bourses du Gabon for the supporting grant number 043827. The authors wish to thank D. Redecker, D. van Tuinen, R. Thomson and G. Adeux whose comments improved the manuscript. Finally, the authors also wish to thank A. Buchwalter for English proofreading.

Supplementary material

13199_2019_612_MOESM1_ESM.pdf (1.2 mb)
ESM 1 (PDF 1201 kb)

References

  1. Altieri MA (1999) The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ 74:19–31.  https://doi.org/10.1016/S0167-8809(99)00028-6 CrossRefGoogle Scholar
  2. Anses (2016) Expositions professionnelles aux pesticides : mieux connaître et réduire les expositions. https://www.anses.fr/fr/content/publication-du-rapport-sur-les-expositions-professionnelles-aux-pesticides-mieux-conna%C3%AEtre. Accessed Jan 2018
  3. Association of Official Seed Analysts of North America, Tetrazolium Testing Committee, Grabe DF (1970) Tetrazolium testing handbook for agricultural seeds. The Association, AmherstGoogle Scholar
  4. Azcón R, Ocampo JA (1981) Factors affecting the vesicular-arbuscular infection and mycorrhizal dependency of thirteen wheat cultivars. New Phytol 87:677–685.  https://doi.org/10.1111/j.1469-8137.1981.tb01702.x CrossRefGoogle Scholar
  5. Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–568. https://doi.org/10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2Google Scholar
  6. Casieri L, Ait Lahmidi N, Doidy J, Veneault-Fourrey C, Migeon A, Bonneau L, Courty P-E, Garcia K, Charbonnier M, Delteil A, Brun A, Zimmermann S, Plassard C, Wipf D (2013) Biotrophic transportome in mutualistic plant–fungal interactions. Mycorrhiza 23:597–625.  https://doi.org/10.1007/s00572-013-0496-9 CrossRefGoogle Scholar
  7. Caussanel JP (1996) Concurrence, compétition et nuisibilité des mauvaises herbes.16ème Conférence du Columa sur la lutte contre les mauvaises herbes. Phytoma 484:21–24Google Scholar
  8. Cordell D, Drangert J-O, White S (2008) The story of phosphorus: global food security and food for thought. Glob Environ Chang 19:292–305.  https://doi.org/10.1016/j.gloenvcha.2008.10.009 CrossRefGoogle Scholar
  9. Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309–1321.  https://doi.org/10.1016/j.cell.2006.12.006 CrossRefGoogle Scholar
  10. Douds DD, Janke RR, Peters SE (1993) VAM fungus spore populations and colonization of roots of maize and soybean under conventional and low-input sustainable agriculture. Agric Ecosyst Environ 43:325–335.  https://doi.org/10.1016/0167-8809(93)90095-7 CrossRefGoogle Scholar
  11. Drain A, Pfister C, Zerbib J, Leborgne-Castel N, Roy S, Courty P-E, Wipf D (2017) Mécanismes cellulaires et moléculaires et ingéniérie écologique des mycorhizes à arbuscules. Briat J.-F., Job D., Les sols et la vie souterraine : des enjeux majeurs en agroécologie. : QUAE (Chapitre 12) 237-254Google Scholar
  12. FAO (2015) World fertilizer and outlook to 2018. http://www.fao.org/3/a-i4324e.pdf. Accessed Jan 2018
  13. Fernández I, Merlos M, López-Ráez JA, Martínez-Medina A, Ferrol N, Azcón C, Bonfante P, Flors V, Pozo MJ (2014) Defense related phytohormones regulation in arbuscular mycorrhizal symbioses depends on the partner genotypes. J Chem Ecol 40:791–803.  https://doi.org/10.1007/s10886-014-0473-6 CrossRefGoogle Scholar
  14. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574.  https://doi.org/10.1126/science.1111772 CrossRefGoogle Scholar
  15. Fox J, Weisberg S (2011) An {R} companion to applied regression, 2nd edn. Sage, Thousand OaksGoogle Scholar
  16. Gamper HA, van der HMGA, Kowalchuk GA (2010) Molecular trait indicators: moving beyond phylogeny in arbuscular mycorrhizal ecology. New Phytol 185:67–82.  https://doi.org/10.1111/j.1469-8137.2009.03058.x CrossRefGoogle Scholar
  17. Gianinazzi S, Gollotte A, Binet M-N, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530.  https://doi.org/10.1007/s00572-010-0333-3 CrossRefGoogle Scholar
  18. Glassop D, Smith SE, Smith FW (2005) Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake into roots. Planta 222:688–698.  https://doi.org/10.1007/s00425-005-0015-0 CrossRefGoogle Scholar
  19. Grant C, Bittman S, Montreal M, Plenchette C, Morel C (2005) Soil and fertilizer phosphorus: effects on plant P supply and mycorrhizal development. Can J Plant Sci 85:3–14.  https://doi.org/10.4141/P03-182 CrossRefGoogle Scholar
  20. Hay RKM (1999) Physiological control of growth and yield in wheat: analysis and synthesis. In: Smith DL, Hamel C (eds) Crop yield: physiology and processes. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 1–38Google Scholar
  21. Helber N, Wippel K, Sauer N, Schaarschmidt S, Hause B, Requena N (2011) A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp is crucial for the symbiotic relationship with plants. Plant Cell 23:3812–3823.  https://doi.org/10.1105/tpc.111.089813 CrossRefGoogle Scholar
  22. Heppell KB, Shumway DL, Koide RT (1998) The effect of mycorrhizal infection of Abutilon theophrasti on competitiveness of offspring. Funct Ecol 12:171–175.  https://doi.org/10.1046/j.1365-2435.1998.00188.x CrossRefGoogle Scholar
  23. Hetrick BAD, Wilson GWT, Cox TS (1992) Mycorrhizal dependence of modern wheat varieties, landraces, and ancestors. Can J Bot 70:2032–2040.  https://doi.org/10.1139/b92-253 CrossRefGoogle Scholar
  24. Hothorn T, Hornik K, van de Wiel MA, Zeileis A (2008) Implementing a class of permutation tests: the coin package. J Stat Softw 28(8):1–23 URL http://www.jstatsoft.org/v28/i08/. Accessed Jun 2018
  25. IPCC (2014) Climate change 2014. http://ipcc.ch. Accessed Jan 2018
  26. IWGSC (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191.  https://doi.org/10.1126/science.aar7191 CrossRefGoogle Scholar
  27. Janos DP (2007) Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17:75–91.  https://doi.org/10.1007/s00572-006-0094-1 CrossRefGoogle Scholar
  28. Johnson SL, Adams RM, Perry GM (1991) The on-farm costs of reducing groundwater pollution. Am J Agric Econ 73:1063–1073.  https://doi.org/10.2307/1242434 CrossRefGoogle Scholar
  29. Johnson NC, Graham J-H, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism–parasitism continuum*. New Phytol 135:575–585.  https://doi.org/10.1046/j.1469-8137.1997.00729.x CrossRefGoogle Scholar
  30. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329.  https://doi.org/10.1038/nature05286 CrossRefGoogle Scholar
  31. Kabir Z (2005) Tillage or no-tillage: impact on mycorrhizae. Can J Plant Sci 85:23–29.  https://doi.org/10.4141/P03-160 CrossRefGoogle Scholar
  32. Kapulnik, Kushnir (1991) Growth dependency of wild, primitive and modern cultivated wheat lines on vesicular-arbuscular mycorrhiza fungi. Euphytica 56:27–36.  https://doi.org/10.1007/BF00041740 Google Scholar
  33. Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal Fungi. Ecology 84:2292–2301.  https://doi.org/10.1890/02-0413 CrossRefGoogle Scholar
  34. Leiser WL, Olatoye MO, Rattunde HFW, Neumann G, Weltzien E, Haussmann BIG (2016) No need to breed for enhanced colonization by arbuscular mycorrhizal fungi to improve low-P adaptation of west African sorghums. Plant Soil 401:51–64.  https://doi.org/10.1007/s11104-015-2437-1 CrossRefGoogle Scholar
  35. Lenth R, Lenth MR (2018) Package ‘lsmeans’. The American Statistician, 34(4):216–221Google Scholar
  36. Manske GGB (1990) Genetical analysis of the efficiency of VA mycorrhiza with spring wheat. In: Genetic aspects of plant mineral nutrition. Springer, Dordrecht, pp 397–405Google Scholar
  37. Mollier (2017) Sélection classique ou participative, plusieurs stratégies pour les blés bios http://inra.fr. Accessed March 2018
  38. Moora M (2014) Mycorrhizal traits and plant communities: perspectives for integration. J Veg Sci 25:1126–1132.  https://doi.org/10.1111/jvs.12177 CrossRefGoogle Scholar
  39. Nuortila C, Kytöviita M-M, Tuomi J (2004) Mycorrhizal symbiosis has contrasting effects on fitness components in Campanula rotundifolia. New Phytol 164:543–553.  https://doi.org/10.1111/j.1469-8137.2004.01195.x CrossRefGoogle Scholar
  40. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2018) Vegan: community ecology package. R package version 2.5–1. https://CRAN.R-project.org/package=vegan. Accessed Jun 2018
  41. Olsen SR (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department Of Agriculture, Washington.Google Scholar
  42. Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–IN18.  https://doi.org/10.1016/S0007-1536(70)80110-3 CrossRefGoogle Scholar
  43. Ploeg A (2008) Biofumigation to manage plant-parasitic nematodes. In: Ciancio A, Mukerji KG (eds) Integrated management and biocontrol of vegetable and grain crops nematodes. Springer Netherlands, Dordrecht, pp 239–248Google Scholar
  44. Porter WM (1979) The ‘most probrable number’ method for enumurationg infective propagules of vesicular arbuscular mycorrhizal funig soil. Aust J Soil Res 17:515–519.  https://doi.org/10.1071/SR9790515 CrossRefGoogle Scholar
  45. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org. Accessed Jun 2018
  46. Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921CrossRefGoogle Scholar
  47. Rillig MC, Lehmann A, Lehmann J, Camenzind T, Rauh C (2018) Soil biodiversity effects from field to fork. Trends Plant Sci 23:17–24.  https://doi.org/10.1016/j.tplants.2017.10.003 CrossRefGoogle Scholar
  48. Rowe HI, Brown CS, Claassen VP (2007) Comparisons of mycorrhizal responsiveness with field soil and commercial inoculum for six native montane species and Bromus tectorum. Restor Ecol 15:44–52.  https://doi.org/10.1111/j.1526-100X.2006.00188.x CrossRefGoogle Scholar
  49. Säle V, Aguilera P, Laczko E, Mäder P, Berner A, Zihlmann U, van der Heijden MGA, Oehl F (2015) Impact of conservation tillage and organic farming on the diversity of arbuscular mycorrhizal fungi. Soil Biol Biochem 84:38–52.  https://doi.org/10.1016/j.soilbio.2015.02.005 CrossRefGoogle Scholar
  50. Sawers RJH, Gutjahr C, Paszkowski U (2008) Cereal mycorrhiza: an ancient symbiosis in modern agriculture. Trends Plant Sci 13:93–97.  https://doi.org/10.1016/j.tplants.2007.11.006 CrossRefGoogle Scholar
  51. Sawers RJH, Gebreselassie MN, Janos DP, Paszkowski U (2010) Characterizing variation in mycorrhiza effect among diverse plant varieties. Theor Appl Genet 120:1029–1039.  https://doi.org/10.1007/s00122-009-1231-y CrossRefGoogle Scholar
  52. Sawers RJH, Ramírez-Flores MR, Olalde-Portugal V, Paszkowski U (2018) The impact of domestication and crop improvement on arbuscular mycorrhizal symbiosis in cereals: insights from genetics and genomics. New Phytol 0.  https://doi.org/10.1111/nph.15152
  53. Simon L, Lalonde M, Bruns TD (1992) Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots. Appl Environ Microbiol 58:291–295Google Scholar
  54. Singh AK, Hamel C, DePauw RM, Knox RE (2012) Genetic variability in arbuscular mycorrhizal fungi compatibility supports the selection of durum wheat genotypes for enhancing soil ecological services and cropping systems in Canada. Can J Microbiol 58:293–302.  https://doi.org/10.1139/w11-140 CrossRefGoogle Scholar
  55. Smith S, Read D (2008) Mycorrhizal Symbiosis, 3rd edition | Sally Smith, David Read | ISBN 9780123705266. http://store.elsevier.com/Mycorrhizal-Symbiosis/Sally-Smith/isbn-9780123705266/. Accessed 30 Jun 2016
  56. Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250.  https://doi.org/10.1146/annurev-arplant-042110-103846 CrossRefGoogle Scholar
  57. Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284.  https://doi.org/10.1126/science.1057544 CrossRefGoogle Scholar
  58. Tisserant E et al (2013) Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Natl Acad Sci 110(50):20117–20122CrossRefGoogle Scholar
  59. Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA d’un systeme radiculaire. Recherche de methods d’estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and Genetical Aspects of Mycorrhizae, INRA, Paris, 217–221Google Scholar
  60. Ulanowicz RE, Goerner SJ, Lietaer B, Gomez R (2009) Quantifying sustainability: resilience, efficiency and the return of information theory. Ecol Complex 6(1):27–36Google Scholar
  61. van der Heijden MGA, Boller T, Wiemken A, Sanders IR (1998) Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79:2082–2091. https://doi.org/10.1890/0012-9658(1998)079[2082:DAMFSA]2.0.CO;2Google Scholar
  62. Verbruggen E, Röling WF, Gamper HA, Kowalchuk GA, Verhoef HA, van der Heijden MG (2010) Positive effects of organic farming on below‐ground mutualists: large‐scale comparison of mycorrhizal fungal communities in agricultural soils. New Phytol 186(4):968–979Google Scholar
  63. Walder F, Boller T, Wiemken A, Courty PE (2016) Regulation of plants' phosphate uptake in common mycorrhizal networks: Role of intraradical fungal phosphate transporters. Plant Signal Behav 11(2):e1131372Google Scholar
  64. Wolfe MS et al (2008) Developments in breeding cereals for organic agriculture. Euphytica 163(3):323Google Scholar
  65. Wortman SE et al (2013) Evaluating cultivars for organic farming: maize, soybean, and wheat genotype by system interactions in Eastern Nebraska. Agroecology and sustainable food systems 37(8):915–932Google Scholar
  66. Zhu YG, Smith SE, Barritt AR, Smith FA (2001) Phosphorus (P) efficiencies and mycorrhizal responsiveness of old and modern wheat cultivars. Plant Soil 237(2):249–255Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Agroécologie, AgroSup Dijon, CNRS, INRAUniv. Bourgogne, Univ. Bourgogne Franche-ComtéDijonFrance
  2. 2.LuxembourgFrance
  3. 3.INOCULUMplus – Pôle d’innovation en Agroecologie AgrOnovBretenièreFrance

Personalised recommendations