, Volume 77, Issue 1, pp 41–47 | Cite as

Improvement of soybean grain nutritional quality under foliar inoculation with Azospirillum brasilense strain Az39

  • Mariana L. Puente
  • Myriam Zawoznik
  • Marcelo López de Sabando
  • Gonzalo Perez
  • José L. Gualpa
  • Susana M. Carletti
  • Fabricio D. CassánEmail author


Legumes depend on biological nitrogen fixation through symbiosis with rhizobia to meet their nitrogen requirements. Certain plant growth promoting rizobacteria such as Azospirillum may cooperate in the establishment and maintenance of effective legume-rhizobia symbiosis. The aim of this work was to assess if foliar inoculation of soybean with Azospirillum brasilense Az39 has advantages over inoculation with this bacterium at sowing in combination with Bradyrhizobium japonicum E109 inoculation. To test this, glasshouse and field experiments were carried out. Higher shoot biomass was observed at V6 and R2 stages under foliar inoculation of A. brasilense Az39 as compared to coinoculation at sowing. Additionally, increased root dry biomass and higher nodule number and nodule fresh weight per plant were found at V6. Leghemoglobin levels in nodules were significantly greater in foliar-inoculated plants at both stages (V6 and R2) as compared with seed-inoculated plants. In line with these positive effects of foliar inoculation with A. brasilense Az39 on soybean growth and nodulation, grains harvested from foliar-inoculated plants had higher nitrogen and protein contents than those harvested from plants coinoculated at sowing. This was corroborated for two soybean varieties cultivated at two different locations. Our findings may open new insights into soybean agricultural technology.


Foliar inoculation Soybean PGPR Inoculants Nodules 



We thank Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Fondo Nacional de Ciencia y Tecnología (FONCyT) and Instituto Nacional de Tecnología Agropecuaria (INTA, Argentina). Fabricio Cassán is a Researcher of CONICET at the UNRC.

Compliance with ethical standards

Conflicts of interest

The authors report no conflicts of interest.


  1. Andreeva LP, Red'kina TV, Ismailov SF (1993) The involvement of indoleacetic acid in the stimulation of rhizobium-legume symbiosis by Azospirillum brasilense. Russ J Plant Physiol 40:901–906Google Scholar
  2. Benintende S, Uhrich W, Herrera M, Gangge F, Sterren M, Benintende M (2010) Comparación entre coinoculación con Bradyrhizobium japonicum y Azospirillum brasilense e inoculación simple con Bradyrhizobium japonicum en la nodulación, crecimiento y acumulación de N en el cultivo de soja. Agriscientia 27:71–77Google Scholar
  3. Bremner JM (1965) Inorganic forms of nitrogen. In: Black CA et al (eds) Methods of soil analysis. Part, vol 2. American Society of Agronomy, Madison, USA, pp 1179–1237Google Scholar
  4. Burdman S, Kigel J, Okon Y (1997) Effects of Azospirillum brasilense on nodulation and growth of common bean (Phaseolus vulgaris). Soil Biol Biochem 29:923–929CrossRefGoogle Scholar
  5. Cassán F, Díaz-Zorita M (2016) Azospirillum sp. in current agriculture: from the laboratory to the field. Soil Biol Biochem 103:117–130CrossRefGoogle Scholar
  6. Cassán FD, Perrig D, Sgroy V, Masciarelli O, Penna C, Luna V (2009) Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur J Soil Biol 45:28–35CrossRefGoogle Scholar
  7. Cassán FD, Vanderleyden J, Spaepen S (2014) Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. J Plant Growth Regul 33(2):440–459CrossRefGoogle Scholar
  8. Castro, PRC, Vieira EL (2001) Aplicações de reguladores vegetais na agricultura tropical. Guaíba: AgropecuáriaGoogle Scholar
  9. Cato SC, Macedo WR, Peres LEP (2013) Sinergism among auxins, gibberellins and cytokinins in tomato cv. Micro-tom. Hortic Bras 31:549–553CrossRefGoogle Scholar
  10. Devi KN, Vyas AK, Singh MS, Singh NG (2011) Effect of bioregulators on growth, yield and chemical constituents of soybean (Glycine max). J Agric Sci 3:151Google Scholar
  11. Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW. InfoStat versión (2014) Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL:
  12. Fabbri P, Del Gallo M (1995) Specific interaction between chickpea (Cicer arietinum L.) and three chickpea-rhizobium strains inoculated singularly and in combination with Azospirillum brasilense cd. In: Azospirillum VI and Related microorganisms. Springer Berlin Heidelberg, pp 257–267Google Scholar
  13. Fehr WR, Caviness CE (1977) Stages of soybean development. Iowa State University, Ames, IAGoogle Scholar
  14. Ferri GC, Braccini AL, Anghinoni FBG, Pereira LC (2017) Effects of associated co-inoculation of Bradyrhizobium japonicum with Azospirillum brasilense on soybean yield and growth. Afr J Agric Res 12:6–11CrossRefGoogle Scholar
  15. González J, Lluch C (1992) Biología del nitrógeno. Interacción planta-microorganismo. Madrid: Rueda, pp 141–161Google Scholar
  16. González López J, Martínez Toledo MV, Reina S, Salmeron V (1991) Root exudates of maize on production of auxins, gibberellins, cytokinins, amino acids and vitamins by Azotobacter chroococcum chemically defined media and dialysed soil media. Toxicol Environ Chem 33:69–78CrossRefGoogle Scholar
  17. Goswami D, Thakker JN, Dhandhukia PC (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric 2(1127500)
  18. Groppa MD, Zawoznik MS, Tomaro ML (1998) Effect of co-inoculation with Bradyrhizobium japonicum and Azospirillum brasilense on soybean plants. Eur J Soil Biol 34:75–80CrossRefGoogle Scholar
  19. Hoagland DR, Arnon DI (1950) The water culture method of growing plants without soil. Calif. Expt. Stat. Univ. CALIF. Berkeley Circ, pp 347Google Scholar
  20. Itzigsohn R, Kapulnik Y, Okon Y, Dovrat A (1993) Physiological and morphological aspects of interactions between Rhizobium meliloti and alfalfa (Medicago sativa) in association with Azospirillum brasilense. Can J Microbiol 39:610–615CrossRefGoogle Scholar
  21. LaRue TA, Child JJ (1979) Sensitive fluorometric assay for leghaemoglobin. Anal Biochem 92:11–15CrossRefGoogle Scholar
  22. Lodeiro AR (2015) Interrogantes en la tecnología de la inoculación de semillas de soja con Bradyrhizobium spp. Rev Argent Microbiol 47:261–273Google Scholar
  23. Marks BB, Megías M, Nogueira MA, Hungria M (2013) Biotechnological potential of rhizobial metabolites to enhance the performance of Bradyrhizobium spp. and Azospirillum brasilense inoculants with soybean and maize. AMB Express 3(2):21CrossRefGoogle Scholar
  24. Molla AH, Shamsuddin ZH, Halimi MS, Morziah M, Puteh AB (2001) Potential for enhancement of root growth and nodulation of soybean co-inoculated with Azospirillum and Bradyrhizobium in laboratory systems. Soil Biol Biochem 33:457–463CrossRefGoogle Scholar
  25. Neto SAV, Pires FR, de Menezes CCE, Menezes JFS, da Silva AG, Silva GP, de Assis RL (2008) Formas de aplicação de inoculante e seus efeitos sobre a nodulação da soja. Rev Bras Ciênc Solo 32:861–870CrossRefGoogle Scholar
  26. Okon Y, Vanderleyden J (1997) Root-associated Azospirillum species can stimulate plants. ASM News 63:366–370Google Scholar
  27. Okon Y, Labandera-Gonzales C, Lage M, Lage P. (2015). Agronomic applications of Azospirillum and other PGPR. In: De Bruijn FJ (ed) Biological nitrogen fixation, 1st Edn, pp 921–933Google Scholar
  28. Palangana FC, Silva ES, Goto R, Ono EO (2012) Ação conjunta de citocinina, giberelina e auxina em pimentão enxertado e não enxertado sob cultivo protegido. Hortic Bras 30:751–755CrossRefGoogle Scholar
  29. Penna C, Massa R, Olivieri F, Gutkind G, Cassán F (2011) A simple method to evaluate the number of bradyrhizobia on soybean seeds and its implication on inoculant quality control. AMB Express 1(1):21CrossRefGoogle Scholar
  30. Portugal JER, Arf O, Peres AR, de Castilho Gitti D, Rodrigues RAF, Garcia NFS, Garré L (2016) Azospirillum brasilense promotes increment in corn production. Afr J Agric Res 11:1688–1698CrossRefGoogle Scholar
  31. Puente ML, Gualpa JL, Lopez GA, Molina RM, Carletti SM, Cassán FD (2017) The benefits of foliar inoculation with Azospirillum brasilense in soybean are explained by an auxin signaling model. Symbiosis.
  32. Rivera D, Revale S, Molina R, Gualpa J, Puente M, Maroniche G, Paris G, Baker D, Clavijo B, McLay K, Spaepen S, Perticari A, Vazquez M, Wisniewski-Dyé F, Watkins C, Martínez-Abarca F, Vanderleyden J, Cassán F (2014) Complete genome sequence of the model rhizosphere strain Azospirillum brasilense Az39, successfully applied in agriculture. Genome Announc 2(4):e00683–e00614CrossRefGoogle Scholar
  33. Rodríguez Cáceres E (1982) Improved medium for isolation of Azospirillum spp. Appl Environ Microbiol 44:990–991Google Scholar
  34. Sadasivan L, Neyra CA (1985) Floculation in Azospirillum brasilense and Azospirillum lipoferum: exopolysaccharides and cyst formation. J Bacteriol 163:716–723Google Scholar
  35. Schmidt W, Martin P, Omay H, Bangerth F (1988) Influence of Azospirillum brasilense on nodulation of legumes. In: Azospirillum IV. Genetics, physiology, ecology. (Ed.) Kling-Müller, W. Springer, Heidelberg, pp 92–100Google Scholar
  36. Srinivasan M, Holl FB, Petersen DJ (1996) Influence of indoleacetic-acid-producing Bacillus isolates on the nodulation of Phaseolus vulgaris by Rhizobium etli under gnotobiotic conditions. Can J Microbiol 42:1006–1014CrossRefGoogle Scholar
  37. Sudhakar P, Chattopadhyay GN, Gangwar SK, Ghosh JK (2000) Effect of foliar application of Azotobacter, Azospirillum and Beijerinckia on leaf yield and quality of mulberry (Morus alba). J Agric Sci 134:227–234CrossRefGoogle Scholar
  38. Taiz L, Zeiger E (2009) Auxina: o hormônio de crescimento. Braz J Plant Physiol 3:449–484Google Scholar
  39. Thimann KV (1936) Auxins and the growth of roots. Am J Bot 23:561–569CrossRefGoogle Scholar
  40. Torres D, Revale S, Obando M, Maroniche G, Paris G, Perticari A, Vazquez M, Wisniewski-Dyé F, Martínez-Abarca F, Cassán F (2015) Genome sequence of Bradyrhizobium japonicum E109, one of the most agronomically used nitrogen-fixing rhizobacteria in Argentina. Genome Announc 3(1):e01566–e01514CrossRefGoogle Scholar
  41. Vendan R, Thangaraju M (2007) Development and standardization of cyst based liquid formulation of Azospirillum bioinoculant. Acta Microbiol Immunol Hung 54(2):167–177CrossRefGoogle Scholar
  42. Vessey JK, Buss TJ (2002) Bacillus cereus UW85 inoculation effects on growth, nodulation, and N accumulation in grain legumes: controlled-environment studies. Can J Plant Sci 82:282–290CrossRefGoogle Scholar
  43. Vieira EL, Castro PRC (2002) Ação de estimulante no desenvolvimento inicial de plantas de algodoeiro (Gossypium hirsutum L.). Piracicaba: USP, Departamento de Ciências Biológicas, pp 3Google Scholar
  44. Vincent JM (1970) A manual for the practical study of root-nodule bacteria. International Biological Program Handbook, vol., 15, Blackwell Scientific Publishers, Oxford, UKGoogle Scholar
  45. Yadegari M, Rahmani HA, Noormohammadi G, Ayneband A (2008) Evaluation of bean (Phaseolus vulgaris) seeds inoculation with Rhizobium phaseoli and plant growth promoting rhizobacteria on yield and yield components. PJBS 11:1935–1939Google Scholar
  46. Yahalom E, Okon Y, Dovrat A (1990) Possible mode of action of Azospirillum brasilense strain cd on the root morphology and nodule formation in burr medic (Medicago polymorpha). Can J Microbiol 36:10–14CrossRefGoogle Scholar
  47. Zarei I, Sohrabi Y, Heidari GR, Jalilian A, Mohammadi K (2014) Effects of biofertilizers on grain yield and protein content of two soybean (Glycine max L.) cultivars. Afr J Biotechnol 11:7028–7037Google Scholar
  48. Zuffo AM, Bruzi AT, de Rezende PM, de Carvalho MLM, Zambiazzi EV, Soares IO, Silva KB (2016) Foliar application of Azospirillum brasilense in soybean and seed physiological quality. Afr J Microbiol Res 10:675–680CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Mariana L. Puente
    • 1
  • Myriam Zawoznik
    • 2
  • Marcelo López de Sabando
    • 3
  • Gonzalo Perez
    • 4
  • José L. Gualpa
    • 6
  • Susana M. Carletti
    • 5
  • Fabricio D. Cassán
    • 6
    Email author return OK on get
  1. 1.Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Microbiología y Zoología Agrícola (Argentina)Buenos AiresArgentina
  2. 2.Departamento Química Biológica, Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
  3. 3.Agencia de Extensión Rural Tandil (Argentina)Instituto Nacional de Tecnología Agropecuaria (INTA)Buenos AiresArgentina
  4. 4.Estación Experimental Agropecuaria Barnetche-Bolívar (Argentina)Instituto Nacional de Tecnología Agropecuaria (INTA)Buenos AiresArgentina
  5. 5.Departamento de Ciencias BásicasUniversidad Nacional de LujánBuenos AiresArgentina
  6. 6.Laboratorio de Fisiología Vegetal y de la Interacción planta-microorganismo. Departamento de Ciencias Naturales, FCEFQyNUniversidad Nacional de Río CuartoCórdobaArgentina

Personalised recommendations