Advertisement

Symbiosis

, Volume 76, Issue 3, pp 253–264 | Cite as

Phylogenetic analyses of Symbiodinium isolated from Waminoa and their anthozoan hosts in the Ryukyu Archipelago, southern Japan

  • Shiori Kunihiro
  • James Davis Reimer
Article

Abstract

It is known that the genus Waminoa (order Acoela, Family Convolutidae) associates with anthozoans (Scleractinia, Octocorallia, Zoantharia) and feeds on the mucus of their host. Despite the close relationship between Waminoa and its host species, it is known from phylogenetic analyses of sequences of the internal transcribed spacer 2 of ribosomal DNA (ITS-2) that photosymbiotic Symbiodinium isolated from Waminoa are different from the Symbiodinium of their anthozoan hosts. Additionally, Waminoa inherit their Symbiodinium and Amphidinium via vertical transmission. In the current study, we looked for and collected Waminoa from different anthozoan hosts from the Ryukyu Archipelago in southern Japan, and then examined the Symbiodinium of Waminoa as well as hosts’ Symbiodinium, and utilized sequences of the hyper-variable non-coding region of the plastid minicircle (psbAncr) in order to re-examine the diversity of Symbiodinium within Waminoa. In the resulting psbAncr phylogenetic tree, all Symbiodinium within Waminoa comprised a unique group within Clade C, all with the same genotype in the psbAncr phylogenetic tree. Our results reconfirm that most Waminoa host their own lineage of Symbiodinium, and demonstrate that Waminoa are also found on azooxanthellate anthozoan hosts, as we found Waminoa on Siphonogorgia sp., expanding their potential known habitat. Additionally, two Symbiodinium from Waminoa from both shallow (4 m) and mesophotic (32 m) depths were not included in main group of Symbiodinium from Waminoa in the ITS-2 phylogenetic tree, although we could not acquire psbAncr sequences for these specimens. Therefore it is possible that undetected Symbiodinium diversity may yet exist within Waminoa, and future work at shallow to mesophotic depths examining both zooxanthellate and azooxanthellate hosts may find more Waminoa and Symbiodinium diversity.

Keywords

Ryukyu Archipelago Okinawa Waminoa Acoela Symbiodinium psbAncr 

Notes

Acknowledgements

This research was supported by Dr. C. Hikosaka (Hiroshima U.) with help on Waminoa identification and advice, and Dr. T. Naruse (U. Ryukyus), Dr. B. T. Reijnen (Naturalis), Dr. T. Fujii (Kagoshima U.), K. Kameda (Kuroshima Research Station), Y. Kushida, Y. Endo, E. Kawai, H. Noda, M. Sakurai, T. Kunishima, E. Ikeuchi and MISE lab members (U. Ryukyus) with help in field work. Dr. B.W. Hoeksema (Naturalis) and Y. Oku (U. Miyazaki) helped with identification of some scleractinian hosts. The research was financially supported by a Sasakawa Scientific Research Grant from the Japan Science Society. Comments from reviewers on an earlier version of this work greatly improved the manuscript.

Supplementary material

13199_2018_557_MOESM1_ESM.pdf (200 kb)
Supplemental Fig. 1 Maximum likelihood (ML) tree of Symbiodinium sequences of chloroplast minicircle psbA noncoding region (psbAncr) forward sequences. Sequences from previous studies are included with GenBank accession numbers, host genera or isolation source. Values at nodes represent ML and neighbor-joining (NJ) bootstrap percentages, respectively, with support over 50% (ML/NJ). Bold font indicates specimens from this study. ‘Waminoa’ and ‘host’ indicate Symbiodinium isolated from Waminoa specimens and Waminoa’s anthozoan hosts, respectively. Black boxes indicate sequences of Symbiodinium isolated from Waminoa. (PDF 199 kb)

References

  1. Baguñà J, Riutort M (2014) Molecular phylogeny of the Platyhelminthes. Can J Zool 82:168–193.  https://doi.org/10.1139/z03-214 CrossRefGoogle Scholar
  2. Barneah O, Brickner I, Hooge M, Weis VM, LaJeunesse TC, Benayahu Y (2007a) Three party symbiosis: acoelomorph worms, corals and unicellular algal symbionts in Eilat (Red Sea). Mar Biol 151:1215–1223.  https://doi.org/10.1007/s00227-006-0563-2 CrossRefGoogle Scholar
  3. Barneah O, Brickner I, Hooge M, Weis VM, Benayahu Y (2007b) First evidence of material transmission of algal endosymbionts at an oocyte stage in a triploblastic host, with observations on reproduction in Waminoa brickneri (Acoelomorpha). Invert Biol 126:113–119.  https://doi.org/10.1111/j.1744-7410.2007.00082.x CrossRefGoogle Scholar
  4. Biondi P, Masucci GD, Kunihiro S, Reimer JD (2017) The distribution of reef-dwelling Waminoa flatworms in bays and on capes of Okinawa Island. Mar Biodivers.  https://doi.org/10.1007/s12526-017-0822-0
  5. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376.  https://doi.org/10.1111/j.1558-5646.1981.tb04991.x CrossRefPubMedPubMedCentralGoogle Scholar
  6. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791.  https://doi.org/10.1111/j.1558-5646.1985.tb00420.x CrossRefPubMedGoogle Scholar
  7. Frade PR, De Jongh F, Vermeulen F, Van Bleijswijk J, Bak RPM (2008) Variation of symbiont distribution between closely related coral species over large depth ranges. Mol Ecol 17:691–703.  https://doi.org/10.1111/j.1365-294X.2007.03612.x CrossRefPubMedGoogle Scholar
  8. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321.  https://doi.org/10.1093/sysbio/syq010 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Haapkylä J, Seymour AS, Barneah O, Brickner I, Hennige S, Suggett D, Smith D (2009) Association of Waminoa sp. (Acoela) with corals in the Wakatobi Marine Park, south-East Sulawesi, Indonesia. Mar Biol 156:1021–1027CrossRefGoogle Scholar
  10. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  11. Hikosaka-Katayama T, Koike K, Yamashita H, Hikosaka A, Koike K (2012) Mechanisms of maternal inheritance of dinoflagellate symbionts in the acoelomorph worm Waminoa litus. Zool Sci 29:559–567.  https://doi.org/10.2108/zsj.29.559 CrossRefGoogle Scholar
  12. Hoeksema B, Farenzena Z (2012) Tissue loss in corals infested by acoelomorph flatworms (Waminoa sp.). Coral Reefs 31:869–869.  https://doi.org/10.1007/s00338-012-0919-7 CrossRefGoogle Scholar
  13. Hunter CL, Morden CW, Smith CM (1997) The utility of ITS sequences in assessing relationships among zooxanthellae and corals. Proc. 8th Int Coral Reef Sym 1599–1602Google Scholar
  14. Hume BC, D’Angelo C, Burt JA, Baker AC, Riegl B, Wiedenmann J (2013) Corals from the Persian/Arabian Gulf as models for thermotolerant reef-builders: prevalence of clade C3 Symbiodinium, host fluorescence and ex situ temperature tolerance. Mar Poll Bull 72:313–322.  https://doi.org/10.1016/j.marpolbul.2012.11.032 CrossRefGoogle Scholar
  15. Hume BC, D’Angelo C, Smith EG, Stevens JR, Burt J, Wiedenmann J (2015) Symbiodinium thermophilum sp. nov., a thermotolerant symbiotic alga prevalent in corals of the world’s hottest sea, the Persian/Arabian Gulf. Sci Rep 5:8562. https://doi.org/10.1038/srep08562pmid:25720577 doi: 10.1038/srep08562Google Scholar
  16. Hume BC, Voolstra CR, Arif C, D’Angelo C, Burt JA, Eyal G, Loya Y, Wiedenmann J (2016) Ancestral genetic diversity associated with the rapid spread of stress-tolerant coral symbionts in response to Holocene climate change. Proc Nat Acad Sci 113:4416–4421.  https://doi.org/10.1073/pnas.1601910113 CrossRefPubMedGoogle Scholar
  17. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In Munro HN, editor, Mammalian Protein Metabolism Academic Press, New York 21–132Google Scholar
  18. Katayama T, Yamamoto M, Wada H, Satoh N (1993) Phylogenetic position of acoel turbellarians inferred from partial 18S rDNA sequences. Zool Sci 10:529–536PubMedGoogle Scholar
  19. Kamezaki M, Higa M, Hirose M, Suda S, Reimer JD (2013) Different zooxanthellae types in populations of the zoanthid Zoanthus sansibaricus along depth gradients in Okinawa, Japan. Mar Biodivers 43:61–70.  https://doi.org/10.1007/s12526-012-0119-2 CrossRefGoogle Scholar
  20. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120.  https://doi.org/10.1007/BF01731581 CrossRefGoogle Scholar
  21. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874.  https://doi.org/10.1093/molbev/msw054 CrossRefGoogle Scholar
  22. LaJeunesse TC, Thornhill DJ (2011) Improved resolution of reef-coral endosymbiont (Symbiodinium) species diversity, ecology and evolution through psbA non-coding region genotyping. PLoS One 6:e29013.  https://doi.org/10.1371/journal.pone.0029013 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Matsushima K, Fujiwara E, Hatta M (2010) An unidentified species of acoel flatworm in the genus Waminoa associated with the coral Acropora from the field in Japan. Galaxea, J Coral Reef Stud 12:51.  https://doi.org/10.3755/galaxea.12.51 CrossRefGoogle Scholar
  24. Milne I, Lindner D, Bayer M, Husmeier D, McGuire G, Marshall DF, Wright F (2009) TOPALi v2: a rich graphical interface for evolutionary analyses of multiple alignments on HPC clusters and multi-core desktops. Bioinformatics 25:126–127.  https://doi.org/10.1093/bioinformatics/btn575 CrossRefPubMedGoogle Scholar
  25. Naumann M, Mayr C, Struck U, Wild C (2010) Coral mucus stable isotope composition and labeling: experimental evidence for mucus uptake by epizoic acoelomorph worms. Mar Biol 157:2521–2531.  https://doi.org/10.1007/s00227-010-1516-3 CrossRefGoogle Scholar
  26. Noda H, Parkinson JE, Yang SY, Reimer JD (2017) A preliminary survey of zoantharian endosymbionts shows high genetic variation over small geographic scales on Okinawa-Jima Island, Japan. PeerJ 5:e3740.  https://doi.org/10.7717/peerj.3740 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Ogunlana M, Hooge M, Tekle Y, Benayahu Y, Barneah O, Tyler S (2005) Waminoa brickneri n. Sp. (Acoela: Acoelomorpha) associated with corals in the Red Sea. Zootaxa 1008:1–11.  https://doi.org/10.11646/zootaxa.1008.1.1 CrossRefGoogle Scholar
  28. Page CA, Field SN, Pollock FJ, Lamb JB, Shedrawi G, Wilson SK (2017) Assessing coral health and disease from digital photographs and in situ surveys. Environ Monit Assess 189:18.  https://doi.org/10.1007/s10661-016-5743-z CrossRefPubMedGoogle Scholar
  29. Philippe H, Brinkmann H, Copley RR, Moroz LL, Nakano H, Poustka AJ, Wallberg A (2011) Peterson KJ, Telford MJ, Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470:255–258.  https://doi.org/10.1038/nature09676 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Ponti M, Fratangeli F, Dondi N, Reinach MS, Serra C, Sweet MJ (2016) Baseline reef health surveys at Bangka Island (North Sulawesi, Indonesia) reveal new threats. PeerJ 4:e2614.  https://doi.org/10.7717/peerj.2614 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Reimer JD, Ono S, Tsukahara J, Takishita K, Maruyama T (2007) Non-seasonal clade-specificity and subclade microvariation in symbiotic dinoflagellates (Symbiodinium spp.) in Zoanthus sansibaricus (Anthozoa: Hexacorallia) at Kagoshima Bay, Japan. Phycol Res 55:58–65.  https://doi.org/10.1111/j.1440-1835.2006.00446.x CrossRefGoogle Scholar
  32. Reimer JD, Herrera M, Gatins R, Roberts MB, Parkinson JE, Berumen ML (2017) Latitudinal variation in the symbiotic dinoflagellate Symbiodinium of the common reef zoantharian Palythoa tuberculosa on the Saudi Arabian coast of the Red Sea. J Biogeogr 44:661–673.  https://doi.org/10.1111/jbi.12795 CrossRefGoogle Scholar
  33. Ruiz-Trillo I, Riutort M, Littlewood DTJ, Herniou EA, Baguna J (1999) Acoel flatworms: earliest extant bilaterian metazoans, not members of Platyhelminthes. Science 283:1919–1923.  https://doi.org/10.1126/science.283.5409.1919 CrossRefPubMedGoogle Scholar
  34. Santos SR, Taylor DJ, Coffroth MA (2001) Genetic comparisons of freshly isolated versus cultured symbiotic dinoflagellates: implications for extrapolating to the intact symbiosis. J Phycol 37:900–912.  https://doi.org/10.1046/j.1529-8817.2001.00194.x CrossRefGoogle Scholar
  35. Sampayo E, Dove S, LaJeunesse TC (2009) Cohesive molecular genetic data delineate species diversity in the dinoflagellate genus Symbiodinium. Mol Ecol 18:500–519.  https://doi.org/10.1111/j.1365-294X.2008.04037.x CrossRefPubMedGoogle Scholar
  36. Sinniger F, Reimer JD, Jan Pawlowski J (2009) The Parazoanthidae (Hexacorallia: Zoantharia) DNA taxonomy: description of two new genera. Mar Biodivers 40:57–70.  https://doi.org/10.1007/s12526-009-0034-3 CrossRefGoogle Scholar
  37. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A guide to methods and applications. San Diego: Academic Press 315–322Google Scholar
  38. Wijgerde T, Schots T, Van Onselen E, Janse M, Karruppannan E, Verreth JAJ, Osinga R (2012) Epizoic acoelomorph flatworms impair zooplankton feeding by the scleractinian coral Galaxea fascicularis. Biol Open 2:10–17.  https://doi.org/10.1242/bio.20122741 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Winsor L (1990) Marine Turbellaria (Acoela) from North Queensland. Mem Queensl Mus 28:785–800Google Scholar
  40. Yamashita H, Koike K (2012) Genetic identity of free-living Symbiodinium obtained over a broad latitudinal range in the Japanese coast. Phycol Res 61:68–80.  https://doi.org/10.1111/pre.12004 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Molcular Invertebrate Systematics & Ecology Lab, Graduate School of Engineering & ScienceUniversity of the RyukyusOkinawaJapan
  2. 2.Tropical Biosphere Research CenterUniversity of the RyukyusOkinawaJapan

Personalised recommendations