, Volume 77, Issue 3, pp 237–247 | Cite as

Nitrogen fixation by riparian plants belonging to Coriariaceae, Rhamnaceae, and Gunneraceae in Northwest Patagonia

  • Eugenia E. Chaia
  • Kerstin Huss-Danell
  • Luis G. Wall
  • David D. MyroldEmail author


Nitrogen fixation by symbiotic bacteria associated with different plant species is a key process of natural ecosystems. To better understand the role of native N2-fixing species in the N economy of riparian ecosystems in northwest Patagonia (Argentina), we evaluated: 1) foliar δ15N and N concentrations of actinorhizal Coriaria ruscifolia, Discaria chacaye, and Colletia hystrix, several non-actinorhizal plants (including Gunnera chilensis), and associated soils in riparian forest sites; 2) the proportion of N derived from the atmosphere (Ndfa) of the actinorhizal plant species from riparian forest and of D. chacaye and Ochetophila trinervis from steppe sites; and 3) trends of foliar and soil δ15N and N concentration with mean annual precipitation (MAP). Although soil N concentrations and δ15N did not vary among plant species within any of the sites, foliar N concentration and δ15N differed among species. In general, N2-fixing species had higher foliar N concentrations and δ15N values closer to 0, the atmospheric value. Both variables separated the groups of N2-fixing and non-N2-fixing plant species. Foliar and soil δ15N correlated positively for non-N2-fixing species but not for N2-fixing species. Across all sites, the Ndfa of C. ruscifolia and C. hystrix was ~100%, ~75% for D. chacaye, and ~50% for G. chilensis. For all species, foliar N concentration and soil δ15N was negatively correlated with MAP, but only non-N2-fixing species showed a significant correlation of foliar δ15N with MAP. These data suggest that plant available N decreases as MAP increases but with no effect on N2-fixing species.


Actinorhizas Cyanobacterial symbiosis Frankia Mean annual precipitation Ochetophila trinervis. Coriaria ruscifolia 



We thank Juan Ochoa for technical help. This work was funded by Universidad Nacional del Comahue (Argentina) and supported by the Oregon Agricultural Experiment Station.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. AIC Autoridad Interjurisdiccional de las Cuencas de los ríos Limay (2017) Neuquén y Negro. Accessed 15 April 2017
  2. Andrews M, James EK, Sprent JI, Boddey RM, Gross E, dos Reis FB Jr (2011) Nitrogen fixation in legumes and actinorhizal plants in natural ecosystems: values obtained using 15N natural abundance. Plant Ecol Divers 4:131–140. CrossRefGoogle Scholar
  3. Austin AT, Sala OE (2002) Carbon and nitrogen dynamics across a natural precipitation gradient in Patagonia. Argentina. J Veg Sci 13:351–360. CrossRefGoogle Scholar
  4. Balboa O, Martinez J (1985) Actividad reductora estacional de los nódulos en algunas especies de Rhamanaceae (Tribu Colletiae). Medio Ambiente 7:63–72Google Scholar
  5. Barros V, Cordon VH, Moyano CL, Mendez RJ, Forquera JC, Pizzio O (1983) Cartas de precipitación de la zona oeste de las provincias de Río Negro y Neuquén. Universidad Nacional del Comahue, Argentina.Google Scholar
  6. BDHI Base de datos de Hidrología Integrada, (2017) Ministerio del Interior, Obras Públicas y Vivienda, Presidencia de la Nación. Accessed 15 April 2017.
  7. Benson DR, Dawson JO (2007) Recent advances in the biogeography and genecology of symbiotic Frankia and its host plants. Physiol Plant 130:318–330. CrossRefGoogle Scholar
  8. Benson DR, Vanden Heuvel B, Potter D (2004) Actinorhizal symbioses: diversity and biogeography. In: Gillings M, Holmes A (eds) Plant microbiology. BIOS Scientific Publishers, Oxford, pp 97–127Google Scholar
  9. Bergman B, Johansson C, Söderbäck E (1992) The NostocGunnera symbiosis. New Phytol 122:379–400. CrossRefGoogle Scholar
  10. Boddey RM, Peoples MB, Palmer B, Dart PJ (2000) Use of the 15N natural abundance technique to quantify biological nitrogen fixation by woody perennials. Nutr Cycl Agroecosyst 57:235–270. CrossRefGoogle Scholar
  11. Busse MD (2000) Suitability and use of the 15N-isotope dilution method to estimate nitrogen fixation by actinorhizal shrubs. For Ecol Manag 136:85–95. CrossRefGoogle Scholar
  12. Chaia EE, Myrold DD (2010) Variation of 15N natural abundance in leaves and nodules of actinorhizal shrubs in Northwest Patagonia. Symbiosis 50:97–105. CrossRefGoogle Scholar
  13. Chaia EE, Fontenla SB, Vobis G, Wall LG (2006) Infectivity of soilborne Frankia and mycorrhizae in Discaria trinervis along a vegetation gradient in Patagonian soil. J Basic Microbiol 46:263–274. CrossRefGoogle Scholar
  14. Chaia EE, Solans M, Vobis G, Wall LG (2007) Infectivity variation of Discaria trinervis-nodulating Frankia in Patagonian soil according to season and storage conditions. Physiol Plant 130:357–363. CrossRefGoogle Scholar
  15. Compton JE, Church MR, Larned ST, Hogsett WE (2003) Nitrogen export from forested watersheds in the Oregon Coast Range: the role of N2-fixing red alder. Ecosystems 6:773–785. CrossRefGoogle Scholar
  16. Cordon V, Forquera J, Gastiazoro J (1993) Estudio Microclimático del Area Cordillerana del Sudoeste de la Provincia de Río Negro “cartas de precipitación”. Universidad Nacional del Comahue, Argentina.Google Scholar
  17. Craine JM et al (2009) Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol 183:980–992. CrossRefGoogle Scholar
  18. Craine JM, Brookshire ENJ, Cramer MD, Hasselquist NJ, Koba K, Marin-Spiotta E, Wang LX (2015a) Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant Soil 396:1–26. CrossRefGoogle Scholar
  19. Craine JM et al (2015b) Convergence of soil nitrogen isotopes across global climate gradients. Sci Rep 5:8280. CrossRefGoogle Scholar
  20. Cusato M, Tortosa R (1998) Host specificity of Frankia from actinorhizal plant soils of South America. Φyton 62:231–236Google Scholar
  21. Dawson JO (2008) Ecology of actinorhizal plants. In: Pawloski K, Newton WE (eds) Nitrogen fixation: origins, applications, and research progress, vol. 6. Nitrogen-fixing actinorhizal symbioses. Springer, Dordrecht, pp 199–234CrossRefGoogle Scholar
  22. del Valle HF (1998) Patagonian soils: a regional synthesis. Ecología Austral 8:103–123Google Scholar
  23. Diehl P, Mazzarino MJ, Funes F, Fontenla S, Gobbi M, Ferrari J (2003) Nutrient conservation strategies in native Andean-Patagonian forests. J Veg Sci 14:63–70. CrossRefGoogle Scholar
  24. Domenach AM, Kurdali F, Bardin R (1989) Estimation of symbiotic dinitrogen fixation in alder forest by the method based on natural 15N abundance. Plant Soil 118:51–59. CrossRefGoogle Scholar
  25. Dosskey MG, Vidon P, Gurwick NP, Allan CJ, Duval TP, Lowrance R (2010) The role of riparian vegetation in protecting and improving chemical water quality in streams. J Am Water Resour Assoc 46:261–277. CrossRefGoogle Scholar
  26. Franche C, Lindström K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant and Soil 321:35–59. CrossRefGoogle Scholar
  27. Hess LJ, Austin AT (2014) Pinus ponderosa alters nitrogen dynamics and diminishes the climate footprint in natural ecosystems of Patagonia. J Ecol 102:610–621. CrossRefGoogle Scholar
  28. Hiltbrunner E et al (2014) Ecological consequences of the expansion of N2-fixing plants in cold biomes. Oecologia 176:11–24. CrossRefGoogle Scholar
  29. Högberg P (1997) 15N natural abundance in soil-plant systems. New Phytol 137:179–203. CrossRefGoogle Scholar
  30. Huss-Danell K (1978) Nitrogenase activity measurements in intact plants of Alnus incana. Physiol Plantarum 43:372–376. CrossRefGoogle Scholar
  31. Kellermann J, Medan D, Aagesen L, Hilger HH (2005) Rehabilitation of the South American genus Ochetophila Poepp. ex Endl. (Rhamnaceae: Colletieae). New Zealand J Bot 43:865–869. CrossRefGoogle Scholar
  32. Manual de la Cuenca del Lago Puelo (2017) (, Accessed 20 April 2017.
  33. Martin KJ, Posavatz NJ, Myrold DD (2003) Nodulation potential of soils from red alder stands covering a wide age range. Plant Soil 254:187–192. CrossRefGoogle Scholar
  34. Mazzarino MJ, Bertiller M, Schlichter T, Gobbi M (1998) Nutrient cycling in Patagonia ecosystems. Ecología Austral 8:167–181Google Scholar
  35. Medan D, Tortosa RD (1976) Nodulos radicales en Discaria y Colletia (Ramnaceas). Bol Soc Argent Bot 17:323–336Google Scholar
  36. Medan D, Tortosa RD (1981) Nódulos actinomicorrícicos en especies argentinas de los géneros Kentrothamnus, Trevoa (Rhamnaceae) y Coriaria (Coriariaceae). Bol Soc Argent Bot 20:71–81Google Scholar
  37. Menge DNL, Hedin LO (2009) Nitrogen fixation in different biogeochemical niches along a 120 000-year chronosequence in New Zealand. Ecology 90:2190–2201. CrossRefGoogle Scholar
  38. Morrone JJ (2015) Biogeographical regionalisation of the Andean region. Zootaxa 3936(30).
  39. Muñoz EA, Garay A (1985) Caracterización climática de la provincial de Río Negro. INTA Estación Experimental, Región Agropecuaria de San Carlos de Bariloche, 58 pp.Google Scholar
  40. Myrold DD, Huss-Danell K (2003) Alder and lupine enhance nitrogen cycling in a degraded forest soil in Northern Sweden. Plant Soil 254:47–56. CrossRefGoogle Scholar
  41. Osborne BA, Cullen ANN, Jones PW, Campbell GJ (1992) Use of nitrogen by the Nostoc-Gunnera tinctoria (Molina) Mirbel symbiosis. New Phytol 120:481–487. CrossRefGoogle Scholar
  42. Silvester WB, Balboa O, Martinez JA (1985) Nodulation and nitrogen fixation in members of the Rhamnaceae (Colletia, Retanilla, Talguenea and Trevoa) growing in the Chilean matorral. Symbiosis 1:29–38Google Scholar
  43. Silvester WB, Parsons R, Watt PW (1996) Direct measurement of release and assimilation of ammonia in the Gunnera-Nostoc symbiosis. New Phytol 132:617–625. CrossRefGoogle Scholar
  44. Stevenson G (1958) Nitrogen fixation by non-nodulated plants, and by nodulated Coriaria arborea. Nature 182:1523–1524. CrossRefGoogle Scholar
  45. Uliassi DD, Ruess RW (2002) Limitations to symbiotic nitrogen fixation in primary succession on the Tanana River floodplain. Ecology 83:88–10. CrossRefGoogle Scholar
  46. Virginia RA, Jarrell WM, Rundel PW, Shearer G, Kohl DH (1989) The use of variation in the natural abundance of 15 N to assess symbiotic nitrogen fixation by woody plants. In: Rundel PW, Ehrenriger JR, Navy KA (eds) Stable isotopes in ecological research. Springer, New York, 375–394.Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Eugenia E. Chaia
    • 1
  • Kerstin Huss-Danell
    • 2
  • Luis G. Wall
    • 3
  • David D. Myrold
    • 4
    Email author
  1. 1.INIBIOMAUniversidad Nacional del Comahue, CONICETBarilocheArgentina
  2. 2.Department of Agricultural Research for Northern SwedenSwedish University of Agricultural Sciences (SLU)UmeåSweden
  3. 3.Departamento de Ciencia y TecnologíaUniversidad Nacional de QuilmesBernalArgentina
  4. 4.Department of Crop and Soil ScienceOregon State UniversityCorvallisUSA

Personalised recommendations