Skip to main content
Log in

The N-metabolites of roots and actinorhizal nodules from Alnus glutinosa and Datisca glomerata: can D. glomerata change N-transport forms when nodulated?

  • Published:
Symbiosis Aims and scope Submit manuscript

The Original Article was published on 22 January 2016

Abstract

To gain more insight in nitrogen metabolism in actinorhizal nodules, a comparison between the N metabolite profiles in roots vs. nodules was initiated for one host plant from the best-examined order of actinorhizal plants, Fagales, A. glutinosa (Betulaceae), a temperate tree, and one host plant from the Cucurbitales order, Datisca glomerata (Datiscaceae). For both symbioses, the symbiotic transcriptomes have been published and can be used to assess the expression of genes representing specific metabolic pathways in nodules. The amino acid profiles of roots in this study suggest that A. glutinosa transported aspartate, glutamate and citrulline in the xylem, a combination of nitrogenous solutes not published previously for this species. The amino acid profiles of D. glomerata roots depended on whether the plants were nodulated or grown on nitrate; roots of nodulated plants contained increased amounts of arginine. Although bacterial transcriptome data showed no symbiotic auxotrophy for branched chain amino acids (leucine, isoleucine, valine) in either symbiosis, D. glomerata nodules contained comparatively high levels of these amino acids. This might represent a response to osmotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alloisio N, Queiroux C, Fournier P, Pujic P, Normand P, Vallenet D, Médigue C, Yamaura M, Kakoi K, Kucho K (2010) The Frankia alni symbiotic transcriptome. Mol Plant-Microbe Interact 23:593–607

    Article  CAS  PubMed  Google Scholar 

  • Bai C, Reilly CC, Wood BW (2007) Identification and quantitation of asparagine and citrulline using high-performance liquid chromatography (HPLC). Anal Chem Insights 2:31–36

    PubMed  PubMed Central  Google Scholar 

  • Barbosa JM, Singh NK, Cherry JH, Locy RD (2010) Nitrate uptake and utilization is modulated by exogenous γ-aminobutyric acid in Arabidopsis thaliana seedlings. Plant Physiol Biochem 48:443–450

    Article  CAS  PubMed  Google Scholar 

  • Berry AM, Murphy TM, Okubara PA, Jacobsen KR, Swensen SM, Pawlowski K (2004) Novel expression pattern of cytosolic glutamine synthetase in nitrogen-fixing root nodules of the actinorhizal host, Datisca glomerata. Plant Physiol 135:1849–1862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berry AM, Mendoza-Herrera A, Guo Y-Y, Hayashi J, Persson T, Barabote R, Demchenko K, Zhang S, Pawlowski K (2011) New perspectives on nodule nitrogen assimilation in actinorhizal symbioses. Funct Plant Biol 38:645–652

    Article  CAS  Google Scholar 

  • Bouché N, Fromm H (2004) GABA in plants: just a metabolite? Trends Plant Sci 9:110–115

    Article  PubMed  Google Scholar 

  • Bown AW, Shelp BJ (1997) The metabolism and functions of γ-aminobutyric acid. Plant Physiol 115:1–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks JM, Benson DR (2016) Comparative metabolomics of root nodules infected with Frankia sp. strains and uninfected roots from Alnus glutinosa and Casuarina cunninghamiana reflects physiological integration. Symbiosis. doi:10.1007/s13199-016-0379-x

    Google Scholar 

  • Carro L, Pujic P, Alloisio N, Fournier P, Boubakri H, Hay AE, Poly F, François P, Hocher V, Mergaert P, Balmand S, Rey M, Heddi A, Normand P (2015) Alnus peptides modify membrane porosity and induce the release of nitrogen-rich metabolites from nitrogen-fixing Frankia. ISME J 9:1723–1733

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen TH, Murata N (2011) Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ 34:1–20

    Article  PubMed  Google Scholar 

  • Couturier J, Doidy J, Guinet F, Wipf D, Blaudez D, Chalot M (2010) Glutamine, arginine and the amino acid transporter Pt-CAT11 play important roles during senescence in poplar. Ann Bot 105:1159–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cramer VA, Schmidt S, Stewart GR, Thorburn PJ (2002) Can the nitrogenous composition of xylem sap be used to assess salinity stress in Casuarina glauca? Tree Physiol 22:1019–1026

    Article  CAS  PubMed  Google Scholar 

  • Dawson JO (2008) Ecology of actinorhizal plants. In: Pawlowski K, W.E. N (eds) Nitrogen-fixing actinorhizal symbioses. Springer, Netherlands, pp. 199–237

    Chapter  Google Scholar 

  • Demina IV, Persson T, Santos P, Plaszczyca M, Pawlowski K (2013) Comparison of the nodule vs. root transcriptome of the actinorhizal plant Datisca glomerata: actinorhizal nodules contain a specific class of defensins. PLoS One 8:e72442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fåhraeus G (1957) The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. J Gen Microbiol 16:374–3781

    PubMed  Google Scholar 

  • Gardner IC, Leaf G (1960) Translocation of citrulline in Alnus glutinosa. Plant Physiol 35:948–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geurts R, Xiao TT, Reinhold-Hurek B (2016) What does it take to evolve a nitrogen-fixing endosymbiosis? Trends Plant Sci 21:199–208

    Article  CAS  PubMed  Google Scholar 

  • Gtari M, Ghodhbane-Gtari F, Nouioui I, Ktari A, Hezbri K, Mimouni W, Sbissi I, Ayari A, Yamanaka T, Normand P, Tisa LS, Boudabous A (2015) Cultivating the uncultured: growing the recalcitrant cluster-2 Frankia strains. Sci Rep 5:13112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan C, Ribeiro A, Akkermans AD, Jing Y, van Kammen A, Bisseling T, Pawlowski K (1996) Nitrogen metabolism in actinorhizal nodules of Alnus glutinosa: expression of glutamine synthetase and acetylornithine transaminase. Plant Mol Biol 32:1177–1184

    Article  CAS  PubMed  Google Scholar 

  • Guérin V, Huché-Thélier L, Charpentier S (2007) Mobilisation of nutrients and transport via the xylem sap in a shrub (Ligustrum ovalifolium) during spring growth: N and C compounds and interactions. J Plant Physiol 164:562–573

    Article  PubMed  Google Scholar 

  • Hacham Y, Avraham T, Amir R (2002) The N-terminal region of Arabidopsis cystathionine gamma-synthase plays an important regulatory role in methionine metabolism. Plant Physiol 128:454–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoagland DR, Arnon DT (1938) The water-culture method for growing plants without soil, California Agriculture Experiment Station Circular 347. University of CA, Berkeley

    Google Scholar 

  • Hocher V, Alloisio N, Auguy F, Fournier P, Doumas P, Pujic P, Gherbi H, Queiroux C, Da Silva C, Wincker P, Normand P, Bogusz D (2011) Transcriptomics of actinorhizal symbioses reveals homologs of the whole common symbiotic signaling cascade. Plant Physiol 156:700–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosie AHF, Allaway D, Galloway CS, Dunsby HA, Poole PS (2002) Rhizobium leguminosarum has a second general amino acid permease with unusually broad substrate specificity and high similarity to branched-chain amino acid transporters (Bra/LIV) of the ABC family. J Bacteriol 184:4071–4080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huguet V, Mergeay M, Cervantes E, Fernandez MP (2004) Diversity of Frankia strains associated to Myrica gale in Western Europe: impact of host plant (Myrica vs. Alnus) and of edaphic factors. Environ Microbiol 6:1032–1041

    Article  CAS  PubMed  Google Scholar 

  • Jeong J, Suh S, Guan C, Tsay YF, Moran N, Oh CJ, An CS, Demchenko KN, Pawlowski K, Lee Y (2004) A nodule-specific dicarboxylate transporter from alder is a member of the peptide transporter family. Plant Physiol 134:969–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi V, Joung JG, Fei Z, Jander G (2010) Interdependence of threonine, methionine and isoleucine metabolism in plants: accumulation and transcriptional regulation under abiotic stress. Amino Acids 39:933–947

    Article  CAS  PubMed  Google Scholar 

  • Karp PD, Paley SM, Krummenacker M, Latendresse M, Dale JM, Lee TJ, Kaipa P, Gilham F, Spaulding A, Popescu L, Altman T, Paulsen I, Keseler IM, Caspi R (2010) Pathway tools version 13.0: integrated software for pathway/genome informatics and systems biology. Brief Bioinform 11:40–79

    Article  CAS  PubMed  Google Scholar 

  • Kinnersley AM, Torano FJ (2000) Gamma aminobutyric acid (GABA) and plant responses to stress. Crit Rev Plant Sci 19:479–509

    Article  CAS  Google Scholar 

  • Mirza MS, Hameed S, Akkermans ADL (1994) Genetic diversity of Datisca cannabina-compatible Frankia strains as determined by sequence analysis of the PCR-amplified 16S rRNA gene. Appl Environ Microbiol 60:2371–2376

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nabais C, Hagemeyer J, Freitas H (2005) Nitrogen transport in the xylem sap of Quercus ilex: the role of ornithine. J Plant Physiol 162:603–606

    Article  CAS  PubMed  Google Scholar 

  • Normand P, Lalonde M (1982) Evaluation of Frankia strains isolated from provenances of two Alnus species. Can J Microbiol 28:1133–1142

    Article  Google Scholar 

  • Normand P, Orso S, Cournoyer B, Jeannin P, Chapelon C, Dawson J, Evtushenko L, Misra AK (1996) Molecular phylogeny of the genus Frankia and related genera and emendation of the family Frankiaceae. Int J Syst Bacteriol 46:1–9

    Article  CAS  PubMed  Google Scholar 

  • Normand P, Lapierre P, Tisa LS, Gogarten JP, Alloisio N, Bagnarol E, Bassi CA, Berry AM, Bickhart DM, Choisne N, Couloux A, Cournoyer B, Cruveiller S, Daubin V, Demange N, Francino MP, Goltsman E, Huang Y, Kopp OR, Labarre L, Lapidus A, Lavire C, Marechal J, Martinez M, Mastronunzio JE, Mullin BC, Niemann J, Pujic P, Rawnsley T, Rouy Z, Schenowitz C, Sellstedt A, Tavares F, Tomkins JP, Vallenet D, Valverde C, Wall LG, Wang Y, Medigue C, Benson DR (2007) Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. Genome Res 17:7–15

    Article  PubMed  PubMed Central  Google Scholar 

  • Oakley B, North M, Franklin JF, Hedlund BP, Staley JT (2004) Diversity and distribution of Frankia strains symbiotic with Ceanothus in California. Appl Environ Microbiol 70:6444–6452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oldroyd GE, Murray JD, Poole PS, Downie JA (2011) The rules of engagement in the legume-rhizobial Symbiosis. Annu Rev Genet 45:119–144

    Article  CAS  PubMed  Google Scholar 

  • Orgován G, Noszál B (2011) The complete microspeciation of arginine and citrulline. J Pharm Biomed Anal 54:965–971

    Article  PubMed  Google Scholar 

  • Pate JS (1980) Transport and partioning of nitrogenous solutes. Annu Rev Plant Physiol 31:313–340

    Article  CAS  Google Scholar 

  • Pawlowski K, Demchenko KN (2012) The diversity of actinorhizal symbiosis. Protoplasma 249:967–979

    Article  PubMed  Google Scholar 

  • Persson T, Benson DR, Normand P, Vanden Heuvel B, Pujic P, Chertkov O, Teshima H, Bruce BC, Detter C, Tapia R, Han S, Han J, Woyke T, Pitluck S, Pennacchio L, Nolan M, Ivanova N, Pati A, Land ML, Pawlowski K, Berry AM (2011) The genome of Candidatus Frankia datiscae Dg1, the uncultured microsymbiont from nitrogen-fixing root nodules of the dicot Datisca glomerata. J Bacteriol 193:7017–7018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Persson T, Battenberg K, Demina IV, Vigil-Stenman T, Vanden Heuvel B, Pujic P, Facciotti MT, Wilbanks EG, O’Brien A, Fournier P, Cruz Hernandez MA, Mendoz Herrera A, Médigue C, Normand P, Pawlowski K, Berry AM (2015) Candidatus Frankia datiscae Dg1, the actinobacterial microsymbiont of Datisca glomerata, expresses the canonical nod genes nodABC in symbiosis with its host plant. PLoS One 10:e0127630

    Article  PubMed  PubMed Central  Google Scholar 

  • Prell J, Bourdès A, Karunakaran R, Lopez-Gomez M, Poole P (2009a) Pathway of γ-aminobutyrate metabolism in Rhizobium leguminosarum 3841 and its role in symbiosis. J Bacteriol 191:2177–2186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prell J, White JP, Bourdes A, Bunnewell S, Bongaerts RJ, Poole PS (2009b) Legumes regulate Rhizobium bacteroid development and persistence by the supply of branched-chain amino acids. Proc Natl Acad Sci U S A 106:12477–12482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher-plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384

    Article  CAS  Google Scholar 

  • Scholz SS, Reichelt M, Mekonnen DW, Ludewig F, Mithöfer A (2015) Insect herbivory-elicited GABA accumulation in plants is a wound-induced, direct, systemic, and jasmonate-independent defense response. Front Plant Sci 6:1128

    Article  PubMed  PubMed Central  Google Scholar 

  • Schubert KR (1986) Products of biological nitrogen fixation in higher plants: synthesis, transport, and metabolism. Annu Rev Plant Physiol 37:539–574

    Article  CAS  Google Scholar 

  • Schwencke J (1991) Rapid, exponential growth and increased biomass yield of some Frankia strains in buffered and stirred mineral medium (BAP) with phosphatidyl choline. Plant Soil 137:37–41

    Article  CAS  Google Scholar 

  • Sellstedt A, Atkins CA (1991) Composition of amino compounds transported in xylem of Casuarina sp. J Exp Bot 42:1493–1497

    Article  CAS  Google Scholar 

  • Sen A, Daubin V, Abrouk D, Gifford I, Berry AM, Normand P (2014) Phylogeny of the class Actinobacteria revisited in the light of complete genomes. The orders ‘Frankiales’ and Micrococcales should be split into coherent entities: proposal of Frankiales ord. nov., Geodermatophilales ord. nov., Acidothermales ord. nov. and Nakamurellales ord. nov. Int J Syst Evol Microbiol 64:3821–3832

    Article  PubMed  Google Scholar 

  • Shelp BJ, Bown AW, McLean MD (1999) Metabolism and functions of γ-aminobutyric acid. Trends Plant Sci 4:446–452

    Article  CAS  PubMed  Google Scholar 

  • Shelp BJ, Bown AW, Faure D (2006) Extracellular γ-aminobutyrate mediates communication between plants and other organisms. Plant Physiol 142:1350–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simonet P, Navarro E, Rouvier C, Reddell P, Zimpfer J, Dawson J, Dommergues Y, Bardin R, Combarro P, Hamelin J, Domenach A-M, Gourbière F, Prin Y, Normand P (1999) Co-evolution between Frankia populations and host plants in the family Casuarinaceae and consequent patterns of global dispersal. Environ Microbiol 1:525–535

    Article  CAS  PubMed  Google Scholar 

  • Snedden WA, Fromm H (1999) Regulation of the γ-aminobutyrate-synthesizing enzyme, glutamate decarboxylase, by calcium–calmodulin: a mechanism for rapid activation in response to stress. In: Lerner HR (ed) Plant responses to environmental stresses: from phytohormones to genome reorganization. Marcel Dekker, New York, pp. 549–574

    Google Scholar 

  • Sulieman S, Schulze J (2010) Phloem derived γ-aminobutyric acid (GABA) is involved in upregulating nodule N2 fixation efficiency in the model legume Medicago truncatula. Plant Cell Environ 33:2162–2172

    Article  CAS  PubMed  Google Scholar 

  • Tajima S, Nomura M, Kouchi H (2004) Ureide biosynthesis in legume nodules. Front Biosci 9:1374–1381

    Article  CAS  PubMed  Google Scholar 

  • Tisa L, McBride M, Ensign JC (1983) Studies of growth and morphology of Frankia strains EAN1pec, EUI1c, CpI1 and ACN1AG. Can J Bot 61:2768–2773

    Article  CAS  Google Scholar 

  • Valverde C, Huss-Danell K (2008) C and N metabolism in actinorhizal nodules. In: Pawlowski K, Newton WE (eds) Nitrogen-fixing actinorhizal symbioses. Springer, Dordrecht, pp. 167–198

    Chapter  Google Scholar 

  • Vercruysse M, Fauvart M, Beullens S, Braeken K, Cloots L, Engelen K, Marchal K, Michiels J (2011) A comparative transcriptome analysis of Rhizobium etli bacteroids: specific gene expression during symbiotic nongrowth. Mol Plant-Microbe Interact 24:1553–1561

    Article  CAS  PubMed  Google Scholar 

  • Wheeler CT, Bond G (1970) The amino acids of non-legume root nodules. Phytochemistry 9:705–708

    Article  CAS  Google Scholar 

  • Winter G, Todd CD, Trovato M, Forlani G, Funck D (2015) Physiological implications of arginine metabolism in plants. Front Plant Sci 6:534

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Benson DR (1992) Utilization of amino acids by Frankia sp. strain CpI1. Arch Microbiol 158:256–261

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Peter Litfors for taking care of the plants in Stockholm and Pascale Fournier for A. glutinosa growth experiments and harvesting of roots and nodules. This work was funded by grants from the Swedish Research Council Formas (229-2005-679) and the Carl Tryggers Foundation to KP, by a grant from the French ANR (Sesam ANR-10-BLAN-1708 and BugsInACell ANR-13-BSV7-0013-03), to PN, and by USDA CA-D* PLS-2173-H to AMB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Pawlowski.

Additional information

Presented at the 18th International Meeting on Frankia and Actinorhizal Plants (ACTINO2015), August 24–27, 2015, Montpellier, France

The online version of the original article can be found at http://dx.doi.org/10.1007/s13199-016-0379-x.

Electronic supplementary material

ESM 1

(XLSX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Persson, T., Van Nguyen, T., Alloisio, N. et al. The N-metabolites of roots and actinorhizal nodules from Alnus glutinosa and Datisca glomerata: can D. glomerata change N-transport forms when nodulated?. Symbiosis 70, 149–157 (2016). https://doi.org/10.1007/s13199-016-0407-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-016-0407-x

Keywords

Navigation