Rheological and physicochemical stability of hydrolyzed jackfruit juice (Artocarpus heterophyllus L.) processed by spray drying

  • Adriana Navarrete-Solis
  • Nicolas Hengl
  • Juan Arturo Ragazzo-Sánchez
  • Stéphane Baup
  • Montserrat Calderón-Santoyo
  • Frédéric Pignon
  • Ulises Miguel López-García
  • Rosa Isela Ortiz-BasurtoEmail author
Original Article


Spray drying represents a viable alternative for the stabilization of juice and extract of a great diversity of plant in tropical zones, such as jackfruit from Nayarit, Mexico. The jackfruit powder allows physicochemical and microbiological stability for storage, transportation, and marketing. In addition, this allows expansion of consumption and use of these exotic tropical fruits. The aim of this work was to find the best enzymatic hydrolysis and spray drying treatment for obtaining jackfruit pulp and juice in powder without affecting its rheological and physicochemical properties. Jackfruit pulp was treated with three commercial enzymes and their mixtures, and the best treatment was then optimized by Response Surface Methodology. The jackfruit pulp and the hydrolyzed juice were spray dried using maltodextrin as a carrier agent. The best hydrolysis was obtained with Celluzyme® and Pectinex Ultra Pulp® and the optimal conditions were 1% of enzyme concentration, during 3 h at 37 °C (p = 0.92), that leads reducing sugar of 78.50 ± 1.93 mg mL−1 and viscosity of 7.94 ± 0.82 cps (94.7% reduction). The enzyme concentration is a direct function of reducing sugars content, while incubation time is an inverse function of viscosity. The spray drying treatment with the highest yield (74%) without affecting rheological and physicochemical properties compared to the fresh hydrolyzed juice was the treatment with 50% (TSS/weight) maltodextrin.


Jackfruit Spray drying Rheological behavior Hydrolyzed fruit juice Maltodextrin 



Authors thank CONACYT-Mexico for student grant number 339958, Biotecsa-Novozym® for the enzymes used in this work and “Frutos Tropicales de la Bahía S.P.R. DE R.L.” from Compostela Nayarit, México for providing jackfruits.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interests.


  1. AOAC, Horwitz W (2005) Official methods of analysis of the AOAC International, vol 18. The Association, GaithersburgGoogle Scholar
  2. Chauhan AS, Afroze SG, Rao RMN, Yadav AR, Narayan RM, Shyam RR (2004) Optimization of enzymatic liquefaction of papaya (Carica papaya L.) and jackfruit (Artocarpus heterophyllus L.) pulp using response surface methodology. J Food Agric Environ 2:108–113. Google Scholar
  3. Chauhan AS, Iboyaima SN, Jagan Mohan Rao L, Rekha MN, Ramteke RS (2010) Physicochemical changes during microfiltration (MF) of jackfruit (Artocarpus heterophyllus Lamk) Juice. Electron J Environ Agric Food Chem 9:720–737Google Scholar
  4. Chong CH, Law CL (2011) Drying of exotic fruits. In: Jangam SV, Law CL, Mujumdar AS (eds) Drying of foods, vegetables and fruits, vol 2. Springer, Singapore, pp 3–5Google Scholar
  5. Chowdhury FA, Azizur Raman M, Jabbar Mian A (1997) Distribution of free sugars and fatty acids in jackfruit (Artocarpus heterophyllus). Food Chem 60:25–28. CrossRefGoogle Scholar
  6. De Faria AF, De Rosso VV, Mercadante AZ (2009) Carotenoid Composition of Jackfruit (Artocarpus heterophyllus). Determined by HPLC-PDA-MS/MS. Plant Foods Hum Nutr 64:108–115. CrossRefGoogle Scholar
  7. DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. CrossRefGoogle Scholar
  8. Eastman JE, Moore CO (1984) Cold-water-soluble granular starch for gelled food compositions. Google Patents
  9. Faria AF, de Rosso VV, Mercadante AZ (2009) Carotenoid composition of jackfruit (Artocarpus heterophyllus). Determined by HPLC-PDA-MS/MS. Plant Food Hum Nutr 64:108–115. CrossRefGoogle Scholar
  10. Garcia-Cruz EE, Rodriguez-Ramirez J, Mendez Lagunas LL, Medina-Torres L (2013) Rheological and physical properties of spray-dried mucilage obtained from Hylocereus undatus cladodes. Carbohydr Polym 91:394–402. CrossRefGoogle Scholar
  11. Goswami C, Hossain MA, Karder HA, Islam R (2011) Assessment of physicochemical properties of jackfruits’ (Artocarpus heterophyllus Lam) pulps. J Horticult For Biotechnol 15:26–31Google Scholar
  12. Goula AM, Adamopoulos KG (2010) A new technique for spray drying orange juice concentrate. Innov Food Sci Emerg Technol 11:342–351. CrossRefGoogle Scholar
  13. Goula AM, Karapantsios TD, Achilias DS, Adamopoulos KG (2008) Water sorption isotherms and glass transition temperature of spray dried tomato pulp. J Food Eng 85:73–83. CrossRefGoogle Scholar
  14. Grabowski JA, Truong V-D, Daubert CR (2006) Spray-drying of amylase hydrolyzed sweetpotato puree and physicochemical properties of powder. J Food Sci 71:E209–E217. CrossRefGoogle Scholar
  15. GuptaU KS, RaoC VN (1963) The pectic acid from the pulp of jackfruit (Artocarpus Integrifolia). I. Methylation studies. Bull Chem Soc Jpn 36:1683–1688. CrossRefGoogle Scholar
  16. Haq N (2006) Jackfruit, Artocarpus heterophyllus. Douthampton centre for underutilised crops. University of Southampton, SouthamptonGoogle Scholar
  17. Koubala BB, Kansci G, Garnier C, Mbome IL, Durand S, Thibault J-F, Ralet M-C (2009) Rheological and high gelling properties of mango (Mangifera indica) and ambarella (Spondias cytherea) peel pectins. Int J Food Sci Technol 44:1809–1817. CrossRefGoogle Scholar
  18. Mahdavi SA, Jafari SM, Ghorbani M, Assadpoor E (2014) Spray-drying microencapsulation of anthocyanins by natural biopolymers: a review. Dry Technol 32:509–518. CrossRefGoogle Scholar
  19. Marques LG, Ferreira MC, Freire JT (2007) Freeze-drying of acerola (Malpighia glabra L.). Chem Eng Process Process Intensif 46:451–457. CrossRefGoogle Scholar
  20. Medina-Torres L et al (2016) Structure preservation of Aloe vera (barbadensis Miller) mucilage in a spray drying process. LWT - Food Sci Technol 66:93–100. CrossRefGoogle Scholar
  21. Molina MPO (2011) Evaluación del uso de pectinasas obtenidas de Aspergillus flavipes FP-500 para la producción de jugo de naranja y su comparación con preparaciones enzimáticas comerciales. Universidad Nacional Autonóma de México, Mexico CityGoogle Scholar
  22. Nagar S, Mittal A, Gupta V (2012) Enzymatic clarification of fruit juices (Apple, Pineapple, and Tomato) using purified Bacillus pumilus SV-85S xylanase. Biotechnol Bioprocess Eng 17:1165–1175. CrossRefGoogle Scholar
  23. Pourashouri P, Shabanpour B, Razavi SH, Aubourg SP (2014) Oxidative stability of spray-dried microencapsulated fish oils with different wall materials. J Aquat Food Prod Technol 23(6):567. CrossRefGoogle Scholar
  24. Prette AP, Almeida FdAC, Villa-vélez HA, Telis-Romero J (2013) Thermodynamic properties of water sorption of jackfruit (Artocarpus heterophyllus Lam.) as a function of moisture content. Food Sci Technol 33:199–208. CrossRefGoogle Scholar
  25. Quek SY, Chok NK, Swedlund P (2007) The physicochemical properties of spray-dried watermelon powders. Chem Eng Process Process Intensif 46:386–392. CrossRefGoogle Scholar
  26. Ranganna S (1986) Handbook of analysis and quality control for fruit and vegetable products. Tata McGraw-Hill Education, New York CityGoogle Scholar
  27. Saxena A, Bawa AS, Raju PS (2012) Effect of minimal processing on quality of jackfruit (Artocarpus heterophyllus L.) bulbs using response surface methodology. Food Bioprocess Technol 5:348–358. CrossRefGoogle Scholar
  28. Shavakhi F, Boo HC, Osman A, Ghazali HM (2012) Effects of enzymatic liquefaction, maltodextrin concentration, and spray-dryer air inlet temperature on pumpkin powder characteristics. Food Bioprocess Technol 5:2837–2847. CrossRefGoogle Scholar
  29. Shrestha AK, Ua-arak T, Adhikari BP, Howes T, Bhandari BR (2007) Glass transition behavior of spray dried orange juice powder measured by differential scanning calorimetry (DSC) and thermal mechanical compression test (TMCT). Int J Food Prop 10:661–673. CrossRefGoogle Scholar
  30. Sreenath HK, Sudarshana Krishna KR, Santhanam K (1995) Enzymatic liquefaction of some varieties of mango pulp. Food Sci Technol LEB 28:196–200. CrossRefGoogle Scholar
  31. Sun G et al (2017) Chemoprevention of colorectal cancer by artocarpin, a dietary phytochemical from Artocarpus heterophyllus. J Agric Food Chem 65:3474–3480. CrossRefGoogle Scholar
  32. Thaiphanit S (2012) Enzymatic processing and spray drying of jackfruit (Artocarpus heterophyllus Lamk.) Syrup. Powder J Food Technol Siam Univ 7:31–39Google Scholar
  33. Tze NL, Han CP, Yusof YA, Ling CN, Talib RA, Taip FS, Aziz MG (2012) Physicochemical and nutritional properties of spray-dried pitaya fruit powder as natural colorant. Food Sci Biotechnol 21:675–682. CrossRefGoogle Scholar
  34. Vaillant F, Millan P, O’Brien G, Dornier M, Decloux M, Reynes M (1999) Crossflow microfiltration of passion fruit juice after partial enzymatic liquefaction. J Food Eng 42:215–224. CrossRefGoogle Scholar
  35. Wong CW, Tan HH (2017) Production of spray-dried honey jackfruit (Artocarpus heterophyllus) powder from enzymatic liquefied puree. J Food Sci Technol 54:564–571. CrossRefGoogle Scholar
  36. Zhang L et al (2017) Jackfruit (Artocarpus heterophyllus Lam.) peel: a better source of antioxidants and a-glucosidase inhibitors than pulp, flake and seed, and phytochemical profile by HPLC-QTOF-MS/MS. Food Chem 234:303–313. CrossRefGoogle Scholar

Copyright information

© Association of Food Scientists & Technologists (India) 2019

Authors and Affiliations

  • Adriana Navarrete-Solis
    • 1
    • 2
  • Nicolas Hengl
    • 2
  • Juan Arturo Ragazzo-Sánchez
    • 1
  • Stéphane Baup
    • 2
  • Montserrat Calderón-Santoyo
    • 1
  • Frédéric Pignon
    • 2
  • Ulises Miguel López-García
    • 1
  • Rosa Isela Ortiz-Basurto
    • 1
    Email author
  1. 1.TecNM-Instituto Tecnológico de TepicLaboratorio Integral de Investigación en AlimentosTepicMexico
  2. 2.Université Grenoble Alpes, CNRSGrenoble INP Institute of Engineering LRPGrenobleFrance

Personalised recommendations