Journal of Food Science and Technology

, Volume 56, Issue 11, pp 4992–4999 | Cite as

Postharvest biocontrol of Colletotrichum gloeosporioides on mango using the marine bacterium Stenotrophomonas rhizophila and its possible mechanisms of action

  • J. J. Reyes-Perez
  • L. G. Hernandez-MontielEmail author
  • S. Vero
  • J. C. Noa-Carrazana
  • E. E. Quiñones-Aguilar
  • G. Rincón-Enríquez
Original Article


The marine bacterium Stenotrophomonas rhizophila was assessed in vitro and in vivo as biocontrol agent against anthracnose disease of mango fruit caused by Colletotrichum gloeosporioides. The results showed that in vitro inhibition of the colony diameter and spore germination of the phytopathogen was due to the production of VOCs, competition for nutrients, and lytic enzymes. When a concentration of 1 × 108 cells ml−1 of the antagonist bacterium was applied to the fruit, disease incidence was reduced by 95%, and the lesion diameter of anthracnose decreased by 85%, which offered greater protection than the synthetic fungicide. This is the first report of antagonistic mechanisms of the marine bacterium S. rhizophila against anthracnose disease in mango, which in this study was found to be more effective than the synthetic fungicide.


Biological control Marine bacterium Postharvest disease Stenotrophomonas rhizophila 



This work was supported financially by a Grant Project from Problemas Nacionales 2015-01-352 of CONACYT (Consejo Nacional de Ciencia y Tecnología, México). We also acknowledge Ernesto Diaz and R. Galicia for their technical support, and Dr. Michael Cordoba a native English speaking editor for editing the manuscript.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.


  1. Afzal I, Shinwari ZK, Iqrar I (2015) Selective isolation and characterization of agriculturally beneficial endophytic bacteria from wild hemp using Canola. Pak J Bot 47:1999–2008Google Scholar
  2. Ahmed ST, Islam M, Mun HS, Sim HJ, Kim YJ, Yang CJ (2014) Effects of Bacillus amyloliquefaciens as a probiotic strain on growth performance, cecal microflora, and fecal noxious gas emissions of broiler chickens. Poult Sci 93:1–9. CrossRefGoogle Scholar
  3. Ashwini N, Srividya S (2014) Potentiality of Bacillus subtilis as biocontrol agent for management of anthracnose disease of chilli caused by Colletotrichum gloeosporioides OGC1. 4 Biotech 4:127–136. CrossRefGoogle Scholar
  4. Bally ISE, Hofman PJ, Irving DE, Coates LM, Dann EK (2009) The effects of nitrogen on postharvest disease in mango (Mangifera indica L. ‘Keitt’). Acta Hortic 820:365–370. CrossRefGoogle Scholar
  5. Barham D, Trinder P (1972) An improved colour reagent for the determination of blood glucose by the oxidase system. Analyst 97:142–145. CrossRefPubMedGoogle Scholar
  6. Bibi F, Yasir M, Song GC, Lee SY, Chung YR (2012) Diversity and characterization of endophytic bacteria associated with tidal flat plants and their antagonistic effects on oomycetous plant pathogens. Plant Pathol J 28:20–31. CrossRefGoogle Scholar
  7. Bruner LR (1964) Determination of reducing value: 3,5-dinitrosalicylic acid method. In: Whistler RL, Smith RJ, BeMiller JN (eds) Methods in carbohydrate chemistry, vol IV. Academic Press, New York, pp 67–71Google Scholar
  8. Chandra EP (2017) Microbial volatiles as chemical weapons against pathogenic fungi. In: Choudhary D, Sharma A, Agarwal P, Varma A, Tuteja N (eds) Volatiles and food security. Springer, SingaporeGoogle Scholar
  9. Chi ZM, Liu G, Zhao S, Li J, Peng Y (2010) Marine yeasts as biocontrol agents and producers of bio-products. Appl Microbiol Biotechnol 86:1227–1241. CrossRefPubMedGoogle Scholar
  10. Di Francesco A, Martini C, Mari M (2016) Biological control of postharvest diseases by microbial antagonists: how many mechanisms of action? Eur J Plant Pathol 145:711–717. CrossRefGoogle Scholar
  11. Dukare AS, Paul S, Nambi VE, Gupta RK, Singh R, Sharma K, Vishwakarma RK (2018) Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review. Crit Rev Food Sci Nutr. CrossRefPubMedGoogle Scholar
  12. Egamberdieva D, Jabborova D, Berg G (2016) Synergistic interactions between Bradyrhizobium japonicum and the endophyte Stenotrophomonas rhizophila and their effects on growth, and nodulation of soybean under salt stress. Plant Soil 405:35–45. CrossRefGoogle Scholar
  13. Etschmann MMW, Bluemke W, Sell D, Schrader J (2002) Biotechnological production of 2-phenylethanol. Appl Microbiol Biotechnol 59:1–8. CrossRefPubMedGoogle Scholar
  14. Gava CAT, de Castro APC, Pereira CA, Fernandes-Júnior PI (2018) Isolation of fruit colonizer yeasts and screening against mango decay caused by multiple pathogens. Biol Control 117:137–146. CrossRefGoogle Scholar
  15. Gotor-Vila A, Usall J, Torres R, Abadias M, Teixido N (2017) Formulation of the biocontrol agent Bacillus amyloliquefaciens CPA-8 using different approaches: liquid, freeze-drying and fluid-bed spray-drying. Biocontrol 62:545–555. CrossRefGoogle Scholar
  16. He J, Ren Y, Chen C, Liu J, Liu H, Pei Y (2017) Defense responses of salicylic acid in mango fruit against postharvest anthracnose, caused by Colletotrichum gloeosporioides and its possible mechanism. J Food Saf 37:1–10. CrossRefGoogle Scholar
  17. Hernandez-Montiel LG, Zulueta-Rodriguez R, Angulo C, Rueda-Puente EO, Quiñonez-Aguilar EE, Galicia R (2017) Marine yeasts and bacteria as biological control agents against anthracnose on mango. J Phytopathol 165:833–840. CrossRefGoogle Scholar
  18. Hernandez-Montiel LG, Gutierrez-Perez ED, Murillo-Amador B, Vero S, Chiquito-Contreras RG, Rincon-Enriquez G (2018) Mechanisms employed by Debaryomyces hansenii in biological control of anthracnose disease on papaya fruit. Postharvest Biol Technol 139:31–37. CrossRefGoogle Scholar
  19. Jakobi M, Winkelmann G, Kaiser D, Kempter C, Jung G, Berg G, Bahl H (1996) Maltophilin: a new antifungal compound produced by Stenotrophomonas maltophilia R3089. J Antibiot 49:1101–1104. CrossRefPubMedGoogle Scholar
  20. Kai M, Effmert U, Berg G, Piechulla B (2007) Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Arch Microbiol 187:351–360. CrossRefPubMedGoogle Scholar
  21. Laslo É, György É, Mara G, Tamás É, Ábrahám B, Lányi S (2012) Screening of plant growth promoting rhizobacteria as potential microbial inoculants. Crop Prot 40:43–48. CrossRefGoogle Scholar
  22. Levin AG, Peres M, Noy M, Love C, Gal Y, Naor A (2018) The response of field-grown mango (cv. Keitt) trees to regulated deficit irrigation at three phenological stages. Irrig Sci 36:25–35. CrossRefGoogle Scholar
  23. Liu J, Sui Y, Wisniewski M, Xie Z, Liu Y, You Y, Zhang X, Sun Z, Li W, Li Y, Wang Q (2017) The impact of the postharvest environment on the viability and virulence of decay fungi. Crit Rev Food Sci Nutr. CrossRefPubMedGoogle Scholar
  24. Madhu K, Pradeep K (2016) Anthracnose: a post-harvest disease of mango. Agrica 4:61–66. CrossRefGoogle Scholar
  25. Rouissi W, Ugolini L, Martini C, Lazzeri L, Mari M (2013) Control of postharvest fungal pathogens by antifungal compounds from Penicillium expansum. J Food Prot 11:1879–1886. CrossRefGoogle Scholar
  26. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56. CrossRefGoogle Scholar
  27. Sharma S, Rao TVR (2017) Responses of fresh-cut products of four mango cultivars under two different storage conditions. J Food Sci Technol 54:1689–1702. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Subbanna ARNS, Rajasekhara H, Stanley J, Mishra KK, Pattanayak A (2018) Pesticidal prospectives of chitinolytic bacteria in agricultural pest management. Soil Biol Biochem 116:52–66. CrossRefGoogle Scholar
  29. Taylor KA (1995) A colorimetric fructose assay. Appl Biochem Biotechnol 53:215–227CrossRefGoogle Scholar
  30. Teintze M, Hossain MB, Barnes CL, Leong J, Van der Helm D (1981) Structure of ferric pseudobactin: a siderophore from a plant growth promoting Pseudomonas. Biochem 20:6446–6457. CrossRefGoogle Scholar
  31. Veldman WM, Regnier T, Augustyn WA (2018) Biocontrol of Fusarium mangiferae responsible for mango malformation using bacterial isolates. Sci Hortic 230:186–195. CrossRefGoogle Scholar
  32. Vida C, Cazorla FM, de Vicente A (2017) Characterization of biocontrol bacterial strains isolated from a suppressiveness-induced soil after amendment with composted almond shells. Res Microbiol 168:583–593. CrossRefPubMedGoogle Scholar
  33. Wang Y, Yu T, Xia J, Yu D, Wang J, Zheng X (2010) Biocontrol of postharvest gray mold of cherry tomatoes with the marine yeast Rhodosporidium paludigenum. Biol Control 53:178–182. CrossRefGoogle Scholar
  34. Yu S, Teng C, Liang J, Song T, Dong L, Bai X, Jin Y, Qu J (2017) Characterization of siderophore produced by Pseudomonas syringae BAF. 1 and its inhibitory effects on spore germination and mycelium morphology of Fusarium oxysporum. J Microbiol 55:877–884. CrossRefPubMedGoogle Scholar
  35. Zhang H, Mahunu GK, Castoria R, Apaliya MT, Yang Q (2017) Augmentation of biocontrol agents with physical methods against postharvest diseases of fruits and vegetables. Trends Food Sci Technol 69:36–45. CrossRefGoogle Scholar

Copyright information

© Association of Food Scientists & Technologists (India) 2019

Authors and Affiliations

  • J. J. Reyes-Perez
    • 1
    • 2
  • L. G. Hernandez-Montiel
    • 3
    Email author
  • S. Vero
    • 4
  • J. C. Noa-Carrazana
    • 5
  • E. E. Quiñones-Aguilar
    • 6
  • G. Rincón-Enríquez
    • 6
  1. 1.Campus Ingeniero Manuel Agustín Haz ÁlvarezUniversidad Técnica Estatal de QuevedoQuevedoEcuador
  2. 2.Universidad Técnica de Cotopaxi, extensión La ManáLa ManáEcuador
  3. 3.Centro de Investigaciones Biológicas del Noroeste S.C.La PazMexico
  4. 4.Facultad de QuímicaUniversidad de la RepublicaMontevideoUruguay
  5. 5.Instituto de Biotecnología y Ecología AplicadaZona UniversitariaXalapaMexico
  6. 6.Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de JaliscoGuadalajaraMexico

Personalised recommendations