Advertisement

Journal of Food Science and Technology

, Volume 56, Issue 11, pp 4844–4854 | Cite as

Proximate composition, nutritional evaluation and functional properties of a promising food: Arabian wax Cissus (Cissus rotundifolia Forssk) leaves

  • Wedad Q. AL-Bukhaiti
  • Anwar Noman
  • Amer Ali Mahdi
  • Sherif M. Abed
  • Abdelmoneim H. Ali
  • Jalaleldeen Khaleel Mohamed
  • Hongxin WangEmail author
Original Article
  • 35 Downloads

Abstract

Cissus rotundifolia is a wild plant, extensively used during scarcity and famine; however, the information about its chemical and nutritional properties still limited. In this work, C. rotundifolia was evaluated for its chemical, nutritional and functional properties. The results revealed that C. rotundifolia mainly contained carbohydrates (72.54%), proteins (12.16%), ash (12.53%), dietary fiber (14.10%), in addition to adequate amounts of essential amino acids and minerals. Fructose, glucose, galactose, and arabinose were the major monosaccharides with a percentage of 23.32, 13.60, 1.24, and 0.25 g/100 g DW, respectively. Furthermore, it was found that C. rotundifolia contained important vitamins, including thiamin (5.37 mg/100 g DW), riboflavin (1.19 mg/100 g DW), pyridoxine (0.46 mg/100 g DW) and folic acid (0.20 mg/100 g DW). The findings of functional properties revealed good water and oil absorption capacities of 2.74 and 1.63 g/g, respectively. Foaming capacity and water solubility index were 14 and 18.74%, respectively. From these results, it can be stated that C. rotundifolia has high nutritional values, which could be used widely in food applications.

Keywords

Cissus rotundifolia Food composition Functional properties Volatile compounds Nutritional values 

Notes

Acknowledgements

This study was financially supported by processing key technology of green tea food (2017YFD0400803), China.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. Aboshora W, Lianfu Z, Dahir M, Gasmalla MA, Musa A, Omer E, Thapa M (2014) Physicochemical, nutritional and functional properties of the epicarp, flesh and pitted sample of doum fruit (Hyphaene Thebaica). J Food Nutr Res 2(4):180–186CrossRefGoogle Scholar
  2. Aboubakar NY, Scher J, Mbofung M (2008) Physicochemical, thermal properties and microstructure of six varieties of taro (Colocasia esculenta L. Schott) flours and starches. J Food Eng 86(2):294–305CrossRefGoogle Scholar
  3. Al-Farga A, Zhang H, Siddeeg A, Shamoon M, Chamba MV, Al-Hajj N (2016) Proximate composition, functional properties, amino acid, mineral and vitamin contents of a novel food: alhydwan (Boerhavia elegana Choisy) seed flour. Food Chem 211:268–273PubMedCrossRefGoogle Scholar
  4. Amaral GV, Silva EK, Cavalcanti RN, Martins CP, Andrade LG, Moraes J, Alvarenga VO, Guimarães JT, Esmerino EA, Freitas MQ (2017) Whey-grape juice drink processed by supercritical carbon dioxide technology: physicochemical characteristics, bioactive compounds and volatile profile. Food Chem 239:697–703PubMedCrossRefGoogle Scholar
  5. Anjum FM, Ahmad I, Butt MS, Sheikh M, Pasha I (2005) Amino acid composition of spring wheats and losses of lysine during chapati baking. J Food Compos Anal 18(6):523–532CrossRefGoogle Scholar
  6. AOAC (2000) Official methods of analysis, 17th edn. Association of Official Analytical Chemists, GaithersburgGoogle Scholar
  7. Arinathan V, Mohan V, John De Britto A (2003) Chemical composition of certain tribal pulses in South India. Int J Food Sci Nutr 54(3):209–217PubMedCrossRefGoogle Scholar
  8. Asensi-Fabado MA, Munné-Bosch S (2010) Vitamins in plants: occurrence, biosynthesis and antioxidant function. Trends Plant Sci 15(10):582–592PubMedCrossRefGoogle Scholar
  9. Berto A, da Silva AF, Visentainer JV, Matsushita M, de Souza NE (2015) Proximate compositions, mineral contents and fatty acid compositions of native Amazonian fruits. Food Res Int 77:441–449CrossRefGoogle Scholar
  10. Coimbra MC, Jorge N (2011) Proximate composition of guariroba (Syagrus oleracea), jerivá (Syagrus romanzoffiana) and macaúba (Acrocomia aculeata) palm fruits. Food Res Int 44(7):2139–2142CrossRefGoogle Scholar
  11. Du S-K, Jiang H, Yu X, Jane J-L (2014) Physicochemical and functional properties of whole legume flour. LWT-Food Sci Technol 55(1):308–313CrossRefGoogle Scholar
  12. Elinge C, Muhammad A, Atiku F, Itodo A, Peni I, Sanni O, Mbongo A (2012) Proximate, mineral and anti-nutrient composition of pumpkin (Cucurbitapepo L) seeds extract. Int J Plant Res 2(5):146–150CrossRefGoogle Scholar
  13. Elkhalifa AEO, Bernhardt R (2010) Influence of grain germination on functional properties of sorghum flour. Food Chem 121(2):387–392CrossRefGoogle Scholar
  14. Embaby HE, Rayan AM (2016) Chemical composition and nutritional evaluation of the seeds of Acacia tortilis (Forssk.) Hayne ssp. raddiana. Food Chem 200:62–68PubMedCrossRefGoogle Scholar
  15. Erbaş M, Certel M, Uslu M (2005) Some chemical properties of white lupin seeds (Lupinus albus L.). Food Chem 89(3):341–345CrossRefGoogle Scholar
  16. Espinosa-Ramírez J, Serna-Saldívar SO (2016) Functionality and characterization of kafirin-rich protein extracts from different whole and decorticated sorghum genotypes. J Cereal Sci 70:57–65CrossRefGoogle Scholar
  17. García-Herrera P, Sánchez-Mata M, Cámara M, Fernández-Ruiz V, Díez-Marqués C, Molina M, Tardío J (2014) Nutrient composition of six wild edible Mediterranean Asteraceae plants of dietary interest. J Food Compos Anal 34(2):163–170CrossRefGoogle Scholar
  18. Gökoðlu N, Yerlikaya P (2003) Determinaton of proximate composition and mineral contents of blue crab (Callinectes sapidus) and swim crab (Portunus pelagicus) caught off the Gulf of Antalya. Food Chem 80(4):495–498CrossRefGoogle Scholar
  19. González-Barrio R, Periago MJ, Luna-Recio C, Garcia-Alonso FJ, Navarro-González I (2018) Chemical composition of the edible flowers, pansy (Viola wittrockiana) and snapdragon (Antirrhinum majus) as new sources of bioactive compounds. Food Chem 252:373–380PubMedCrossRefGoogle Scholar
  20. Jitngarmkusol S, Hongsuwankul J, Tananuwong K (2008) Chemical compositions, functional properties, and microstructure of defatted macadamia flours. Food Chem 110(1):23–30PubMedCrossRefGoogle Scholar
  21. Kibar B, Kibar H (2017) Determination of the nutritional and seed properties of some wild edible plants consumed as vegetable in the Middle Black Sea Region of Turkey. S Afr J Bot 108:117–125CrossRefGoogle Scholar
  22. Korish M (2016) Nutritional evaluation of wild plant Cissus rotundifolia. Ital J Food Sci 28(1):43–49Google Scholar
  23. Kraithong S, Lee S, Rawdkuen S (2018) Physicochemical and functional properties of Thai organic rice flour. J Cereal Sci 79:259–266CrossRefGoogle Scholar
  24. Lee B, Lin P-C, soo Cha H, Luo J, Chen F (2016) Characterization of volatile compounds in Cowart muscadine grape (Vitis rotundifolia) during ripening stages using GC-MS combined with principal component analysis. Food Sci Biotechnol 25(5):1319–1326PubMedPubMedCentralCrossRefGoogle Scholar
  25. Ma B, Chen J, Zheng H, Fang T, Ogutu C, Li S, Wu B (2015) Comparative assessment of sugar and malic acid composition in cultivated and wild apples. Food Chem 172:86–91PubMedCrossRefGoogle Scholar
  26. Mesías M, Holgado F, Márquez-Ruiz G, Morales FJ (2016) Risk/benefit considerations of a new formulation of wheat-based biscuit supplemented with different amounts of chia flour. LWT-Food Sci Technol 73:528–535CrossRefGoogle Scholar
  27. Noman A, Xu Y, AL-Bukhaiti WQ, Abed SM, Ali AH, Ramadhan AH, Xia W (2018) Influence of enzymatic hydrolysis conditions on the degree of hydrolysis and functional properties of protein hydrolysate obtained from Chinese sturgeon (Acipenser sinensis) by using papain enzyme. Process Biochem 67:19–28CrossRefGoogle Scholar
  28. Pinela J, Carvalho AM, Ferreira IC (2017) Wild edible plants: nutritional and toxicological characteristics, retrieval strategies and importance for today’s society. Food Chem Toxicol 110:165–188PubMedCrossRefGoogle Scholar
  29. Powers HJ (2003) Riboflavin (vitamin B-2) and health. Am J Clin Nutr 77(6):1352–1360PubMedCrossRefGoogle Scholar
  30. Reyes-García V, Menendez-Baceta G, Aceituno-Mata L, Acosta-Naranjo R, Calvet-Mir L, Domínguez P, Molina M (2015) From famine foods to delicatessen: interpreting trends in the use of wild edible plants through cultural ecosystem services. Ecol Econ 120:303–311CrossRefGoogle Scholar
  31. Ruizrodríguez BM, Morales P, Fernándezruiz V, Sánchezmata MC, Cámara M, Díezmarqués C, Pardo-de-Santayana M, Molina M, Tardío J (2011) Valorization of wild strawberry-tree fruits (Arbutus unedo L.) through nutritional assessment and natural production data. Food Res Int 44(5):1244–1253CrossRefGoogle Scholar
  32. Suárez MH, Galdón BR, Mesa DR, Romero CD, Rodríguez ER (2012) Sugars, organic acids and total phenols in varieties of chestnut fruits from Tenerife (Spain). Food Nutr Sci 3(6):705Google Scholar
  33. Sumczynski D, Bubelova Z, Sneyd J, Erb-Weber S, Mlcek J (2015) Total phenolics, flavonoids, antioxidant activity, crude fibre and digestibility in non-traditional wheat flakes and muesli. Food Chem 174:319–325PubMedCrossRefGoogle Scholar
  34. Turner NJ, Łuczaj ŁJ, Migliorini P, Pieroni A, Dreon AL, Sacchetti LE, Paoletti MG (2011) Edible and tended wild plants, traditional ecological knowledge and agroecology. Crit Rev Plant Sci 30(1–2):198–225CrossRefGoogle Scholar
  35. Vardavas C, Majchrzak D, Wagner K-H, Elmadfa I, Kafatos A (2006) The antioxidant and phylloquinone content of wildly grown greens in Crete. Food Chem 99(4):813–821CrossRefGoogle Scholar
  36. Wang L, Zhang B, Xiao J, Huang Q, Li C, Fu X (2018) Physicochemical, functional, and biological properties of water-soluble polysaccharides from Rosa roxburghii Tratt fruit. Food Chem 249:127–135PubMedCrossRefGoogle Scholar
  37. Xiong Y, Zhang P, Luo J, Johnson S, Fang Z (2018) Effect of processing on the phenolic contents, antioxidant activity and volatile compounds of sorghum grain tea. J Cereal Sci.  https://doi.org/10.1016/j.jcs.2018.10.012 CrossRefGoogle Scholar
  38. Yang C, Wang Y, Liang Z, Fan P, Wu B, Yang L, Li S (2009) Volatiles of grape berries evaluated at the germplasm level by headspace-SPME with GC-MS. Food Chem 114(3):1106–1114CrossRefGoogle Scholar
  39. Zheng H, Zhang Q, Quan J, Zheng Q, Xi W (2016) Determination of sugars, organic acids, aroma components, and carotenoids in grapefruit pulps. Food Chem 205:112–121PubMedCrossRefGoogle Scholar

Copyright information

© Association of Food Scientists & Technologists (India) 2019

Authors and Affiliations

  • Wedad Q. AL-Bukhaiti
    • 1
  • Anwar Noman
    • 1
    • 2
  • Amer Ali Mahdi
    • 1
  • Sherif M. Abed
    • 1
  • Abdelmoneim H. Ali
    • 1
  • Jalaleldeen Khaleel Mohamed
    • 1
  • Hongxin Wang
    • 1
    Email author
  1. 1.State Key Laboratory of Food Science and Technology, School of Food Science and TechnologyJiangnan UniversityWuxiChina
  2. 2.Department of Agricultural Engineering, Faculty of AgricultureSana’a UniversitySana’aYemen

Personalised recommendations