Advertisement

Journal of Food Science and Technology

, Volume 56, Issue 10, pp 4503–4515 | Cite as

Characterization of commercial Sacha inchi oil according to its composition: tocopherols, fatty acids, sterols, triterpene and aliphatic alcohols

  • Fernando Ramos-EscuderoEmail author
  • Ana María Muñoz
  • Mónica Ramos Escudero
  • Adriana Viñas-Ospino
  • María Teresa Morales
  • Agustín G. Asuero
Original Article
  • 112 Downloads

Abstract

Sacha inchi oil (SIO) is one of the largest vegetable oil exports in Peru, used for consumption, in the food industry, cosmetics, and pharmaceuticals; it represents a significant economic income for producers. This study addresses the characterization and quantification of fatty acids, tocopherols, sterols, and alcohols of commercial Sacha inchi oils from Peru. Some of the SIO samples received had a high substance consistency, while others differed in the compounds studied. The results showed that some of the commercialized oils present high levels of γ-tocopherol and δ-tocopherol, while other samples had variable fatty acid compositions; especially in α-linolenic, linoleic, oleic and palmitic acids. Fourteen sterols and eleven alcohols were identified (β-sitosterol, stigmasterol, campesterol, Δ5-avenasterol, triterpene alcohol, lanosterol isomer 1 and cycloartenol) being the major components. Some SIO samples presented the following ratios: The δ-tocopherol/γ-tocopherol ratio was 0.33–0.81, ω-6/ω-3 ratio was 0.77 and a stigmasterol/campesterol ratio of 3.13. The presence of brassicasterol in some commercial oils indicates the addition of rapeseed or canola oil. Tocopherols, fatty acids, sterols and alcohol data provided a classification of SIO samples, by an efficient k-means clustering algorithm analysis. The ANOVA found significant differences between clusters for palmitic acid, oleic acid, γ-tocopherol, δ-tocopherol, campesterol and stigmasterol; these compounds could be used as markers of authenticity in commercial Sacha inchi oils.

Keywords

Oil purity Chromatographic methods Composition data Authenticity Classification 

Notes

References

  1. Abbas O, Baeten V (2016) Advances in the identification of adulterated vegetable oils. In: Downey G (ed) Advances in food authenticity testing. Elsevier Ltd, Duxford, pp 519–535CrossRefGoogle Scholar
  2. Alvites-Misajel K, García-Gutiérrez M, Miranda-Rodríguez C, Ramos-Escudero F (2019) Organically vs conventionally grown dark and white chia seeds (Salvia hispanica L.): fatty acid composition, antioxidant activity and techno-functional properties. Grasas Aceites 70:e299.  https://doi.org/10.3989/gya.0462181 CrossRefGoogle Scholar
  3. Bondioli P, Della-Bella L, Rettke P (2006) Alpha linolenic acid rich oils. Composition of Plukenetia volubilis (Sacha inchi) oil from Peru. Riv Ital Sostanze Gr 83:120–123Google Scholar
  4. Boulkroune H, Lazzez A, Guissous M, Bellik Y, Smaoui S, Kamoun NG, Madani T (2017) Characterization of sterolic and alcoholic fractions of some Algerian olive oils according to the variety and ripening stage. OCL Oils Fat Crop Lipids 24:A502.  https://doi.org/10.1051/ocl/2017026 CrossRefGoogle Scholar
  5. Bussmann RW, Téllez C, Glenn G (2009) Plukenetia huayllabambana sp. nov. (Euphorbiaceae) from the upper Amazon of Peru. Nord J Bot 27:313–315CrossRefGoogle Scholar
  6. Chasquibol NA, del Águila C, Yacono JC, Guinda A, Moreda W, Gómez-Coca RB, Pérez-Camino MC (2014) Characterization of glyceridic and unsaponifiable compounds of Sacha inchi (Plukenetia huayllabambana L.) oils. J Agric Food Chem 62:10162–10169CrossRefGoogle Scholar
  7. Chasquibol NA, Gómez-Coca RB, Yácono JC, Guinda A, Moreda W, del Aguila C, Pérez-Camino MC (2016) Markers of quality and genuineness of commercial extra virgin Sacha inchi oils. Grasas Aceites 67:e169.  https://doi.org/10.3989/gya.0457161 CrossRefGoogle Scholar
  8. Chirinos R, Zuloeta G, Pedreschi R, Mignolet E, Larondelle Y, Campos D (2013) Sacha inchi (Plukenetia volubilis): a seed source of polyunsaturated fatty acids, tocopherols, phytosterols, phenolic compounds and antioxidant capacity. Food Chem 141:1732–1739CrossRefGoogle Scholar
  9. Chirinos R, Pedreschi R, Domínguez G, Campos D (2015) Comparison of the physico-chemical and phytochemical characteristics of the oil of two Plukenetia species. Food Chem 173:1203–1206CrossRefGoogle Scholar
  10. Commission Regulation 2568/91 EU (2011) Regulation on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis. Off J Eur Union L23:1–14Google Scholar
  11. Fanali C, Dugo L, Cacciola F, Beccaria M, Grasso S, Dachà M, Dugo P, Mondello L (2011) Chemical characterization of Sacha inchi (Plukenetia volubilis L.) oil. J Agric Food Chem 59:13043–13049CrossRefGoogle Scholar
  12. Fiori F, Dimandja JMD, Boselli E, Rossetti F, Chamkasem N (2016) Enhanced profile characterization of virgin olive oil minor polar compound extracts by comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometric detection. Pol J Appl Sci 2:71–79Google Scholar
  13. Follegatti-Romero LA, Piantino CR, Grimaldi R, Cabral FA (2009) Supercritical CO2 extraction of omega-3 rich oil from Sacha inchi (Plukenetia volubilis L.) sedes. J Supercrit Fluids 49:323–329CrossRefGoogle Scholar
  14. Fontanel D (2013) Unsaponifiable matter in plant seed oil. Springer, New YorkCrossRefGoogle Scholar
  15. Gliszczyńska-Świgło A, Sikorska E, Khmelinskii I, Sikorski M (2007) Tocopherol content in edible plant oils. Pol J Food Nutr Sci 57:157–161Google Scholar
  16. Hassanien MFR (2013) Plant sterols and tocols profile of vegetable oils consumed in Egypt. Int J Food Prop 16:574–585CrossRefGoogle Scholar
  17. IUPAC (1992) Standard methods for the analysis of oils, fats and derivatives. In: International union of pure and applied chemistry, 7th edn, Pergamon Press, OxfordGoogle Scholar
  18. Lerma-García MJ, Ramis-Ramos G, Herrero-Martínez JM, Gimeno-Adelantado JV, Simó-Alfonso EF (2009) Characterization of the alcoholic fraction of vegetable oils by derivatization with diphenic anhydride followed by high-performance liquid chromatography with spectrophotometric and mass spectrometric detection. J Chromatogr A 1216:230–236CrossRefGoogle Scholar
  19. Li TSC, Beveridge THJ, Drover JCG (2007) Phytosterol content of sea buckthorn (Hippophae rhamnoides L.) seed oil: extraction and identification. Food Chem 101:1633–1639CrossRefGoogle Scholar
  20. Li X, Kong W, Shi W, Shen Q (2016) A combination of chemometrics methods and GC-MS for the classification of edible vegetable oils. Chemom Intell Lab Syst 155:145–150CrossRefGoogle Scholar
  21. Liu Q, Xu YK, Zhang P, Na Z, Tang T, Shi YX (2014) Chemical composition and oxidative evolution of Sacha inchi (Pluketia volubilis L.) oil from Xishuangbanna (China). Grasas Aceites 65:e012.  https://doi.org/10.3989/gya.075713 CrossRefGoogle Scholar
  22. Majchrzak T, Wojnowski W, Dymerski T, Gębicki J, Namieśnik J (2018) Electronic noses in classification and quality control of edible oils: a review. Food Chem 246:192–201CrossRefGoogle Scholar
  23. Marone E, Masi E, Taiti C, Pandolfi C, Bazihizina N, Azzarello E, Fiorino P, Mancuso S (2017) Sensory, spectrometric (PTR-ToF-MS) and chemometric analyses to distinguish extra virgin from virgin olive oils. J Food Sci Technol 54:1368–1376CrossRefGoogle Scholar
  24. Maurer NE, Hatta-Sakoda B, Pascual-Chagman G, Rodríguez-Saona LE (2012) Characterization and authentication of a novel vegetable source of omega-3 fatty acids, Sacha inchi (Plukenetia volubilis L.) oil. Food Chem 134:1173–1180CrossRefGoogle Scholar
  25. NTP (2009) Norma Tecnica Peruana 151.400, 2009. Sacha inchi oil. Requirements, R.035-2009/INDECOPI-CNB: Lima, PeruGoogle Scholar
  26. NTP (2018) Norma Tecnica Peruana 151.400, amendment to NTP 151.400, 2014. Sacha inchi oil. Requirements, R.D. N° 047-2018-INACAL/DN: Lima, PeruGoogle Scholar
  27. Rueda A, Seiquer I, Olalla M, Giménez R, Lara L, Cabrera-Vique C (2014) Characterization of fatty acid profile of Argan oil and other edible vegetable oils by gas chromatography and discriminant analysis. J Chem 2014:843908.  https://doi.org/10.1155/2014/843908 CrossRefGoogle Scholar
  28. Saini RK, Keum YS (2018) Omega-3 and omega-6 polyunsaturated fatty acids: dietary sources, metabolism, and significance: a review. Life Sci 203:255–267CrossRefGoogle Scholar
  29. Simopoulos AP (2016) An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients 8:128.  https://doi.org/10.3390/nu8030128 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Triana-Maldonado DM, Torijano-Gutiérrez SA, Giraldo-Estrada C (2017) Supercritical CO2 extraction of oil and omega-3 concentrate from Sacha inchi (Plukenetia volubilis L.) from Antioquia, Colombia. Grasas Aceites 68:e172.  https://doi.org/10.3989/gya.0786161 CrossRefGoogle Scholar
  31. Vetter W, Schröder M, Lehnert K (2012) Differentiation of refined and virgin edible oils by means of the trans- and cis-phytol isomer distribution. J Agric Food Chem 60:6103–6107CrossRefGoogle Scholar
  32. Wang S, Zhu F, Kakuda Y (2018) Sacha inchi (Plukenetia volubilis L.): nutritional composition, biological activity, and uses. Food Chem 265:316–328CrossRefGoogle Scholar
  33. Xu B, Zhang L, Wang H, Luo D, Li P (2014) Characterization and authentication of four important edible oils using free phytosterol profiles established by GC-GC-TOF/MS. Anal Methods 6:6860–6870CrossRefGoogle Scholar
  34. Yang Y, Ferro MD, Cavaco I, Liang Y (2013) Detection and identification of extra virgin olive oil adulteration by GC-MS combined with chemometrics. J Agric Food Chem 61:3693–3702CrossRefGoogle Scholar
  35. Yang R, Zhang L, Li P, Yu L, Mao J, Wang X, Zhang Q (2018) A review of chemical composition and nutritional properties of minor vegetable oils in China. Trends Food Sci Technol 74:26–32CrossRefGoogle Scholar
  36. Zhang X, Cambrai A, Miesch M, Roussi S, Raul F, Aoude-Werner D, Marchioni E (2006) Separation of ∆5- and ∆7-phytosterols by adsorption chromatography and semipreparative reversed phase high-performance liquid chromatography for quantitative analysis of phytosterols in foods. J Agric Food Chem 54:1196–1202CrossRefGoogle Scholar

Copyright information

© Association of Food Scientists & Technologists (India) 2019

Authors and Affiliations

  1. 1.Unidad de Investigación en Nutrición, Salud, Alimentos Funcionales y NutraceúticosUniversidad San Ignacio de Loyola (UNUSAN-USIL)LimaPeru
  2. 2.Department of Analytical ChemistryUniversity of SevilleSevilleSpain
  3. 3.Laboratorio de Química Industrial, Facultad de Ingeniería y ArquitecturaUniversidad de San Martín de PorresLimaPeru
  4. 4.Facultad de Ciencias de la SaludUniversidad Tecnológica del PerúLimaPeru

Personalised recommendations