Advertisement

Determining 1-kestose, nystose and raffinose oligosaccharides in grape juices and wines using HPLC: method validation and characterization of products from Northeast Brazil

  • Marcos dos Santos LimaEmail author
  • Polyana Campos Nunes
  • Bernadete de Lourdes de Araújo Silva
  • Carla Valéria da Silva Padilha
  • Thaís Helena Figueiredo do Bonfim
  • Tania Lucia Montenegro Stamford
  • Margarida Angélica da Silva Vasconcelos
  • Jailane de Souza Aquino
Original Article

Abstract

The objective of this work was to validate a method for direct determination in grape juice and wine of 1-kestose, nystose and raffinose oligosaccharides by reversed-phase high-performance liquid chromatography with refractive index detection using a new type of RP-C18 column (150 × 4.6 mm, 4 µm) with polar end-capping. The validated methodology was also used to characterize grape juice and fine wine products from Northeastern Brazil; and presented suitable linearity, precision, recovery, limits of detection and quantification. The method presented good specificity, revealing that sugars, organic acids, and ethanol (the main interferences in refraction detection) did not influence the quantification of the studied oligosaccharides. The main oligosaccharide found was 1-kestose (approximately 50% of the samples), followed by raffinose (20% of the samples). The results obtained in this are an indication that grape juices and wines have the potential to be functional beverages in relation to the presence of prebiotics.

Keywords

Fructooligosaccharides Food analysis Functional beverages Galacto-oligosaccharides Synergi™ hydro-RP C18 column 

Notes

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. The authors thank the CAPES (Brazil) for a scholarship awarded to P.C. Nunes and T.H.F do Bonfim.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Al-Sheraji SH, Ismail A, Manap MY, Mustafa S, Yusof RM, Hassan FA (2013) Prebiotics as functional foods: a review. J. Funct. Foods 5:1542–1553CrossRefGoogle Scholar
  2. Ambalam P, Ramam M, Purama RK, Doble M (2016) Probiotics, prebiotics and colorectal cancer prevention. Best Pract Res Clin Gastroenterol 30:119–131CrossRefGoogle Scholar
  3. Apolinar-Valiente R, Romero-Cascales I, Williams P, Gómez-Plaza E, López-Roca JM, Ros-García JM, Doco T (2015) Oligosaccharides of Cabernet Sauvignon, Syrah and Monastrell red wines. Food Chem 179:311–317CrossRefGoogle Scholar
  4. Aquino JS, Batista KS, Duarte FND, Lins PP, Gomes JAS, & Silva LA (2017) Models to evaluate the prebiotic potential of foods. In: Chavarri M (ed), Functional food—improve health through adequate food. In tech, Rijeka, pp 235–256. https://www.intechopen.com/books/functional-food-improve-health-through-adequate-food/models-to-evaluate-the-prebiotic-potential-of-foods
  5. Ball S, Mapp K, Lloyd L (2013) Sugar analysis: an aqueous alternative to the use of amino-bonded HPLC columns with acetronitrile eluents. Poster, Agilent Technologies Inc., Santa Clara, CA, USA. https://www.agilent.com/cs/library/posters/public/SI-2576%20HPLC%202009%20sugar%20analysis,%20no%20ACN.pdf Accessed 21 May 2018
  6. Barthomeuf C, Grizard D, Teulade J-C (1997) Assay and structural determination of fructo-oligosaccharides synthesized by an enzymatic system from Penicillium rugulosum. Biotechnol Tech 11:845–848CrossRefGoogle Scholar
  7. Belorkar SA, Gupta AK (2016) Oligosaccharides: a boon from nature’s desk. AMB Express 6(82):1–11Google Scholar
  8. Benkeblia N (2013) Fructooligosaccharides and fructans analysis in plants and food crops. J Chromatogr A 1313:54–61CrossRefGoogle Scholar
  9. Blanch M, Sanchez-Ballesta MT, Escribano MI, Morodio C (2011) Fructo-oligosaccharides in table grapes and response to storage. Food Chem 129:724–730CrossRefGoogle Scholar
  10. Brasil (2011) Ministério da Agricultura, Pecuária e Abastecimento. Guia de Validação e Controle de Qualidade Analítica: Fármacos em Produtos para Alimentação Animal e Medicamentos Veterinários. Secretaria de Defesa Agropecuária, Brasília, 2011. http://www.agricultura.gov.br/assuntos/laboratorios/arquivos-publicacoes-laboratorio/guia-de-validacao-controle-de-qualidade-analitica.pdf/view Accessed 20 May 2018
  11. Coelho EM, da Silva Padilha CV, Miskinis GA, de Sá AGB, Pereira GE, de Azevêdo LC, dos Santos Lima M (2018) Simultaneous analysis of sugars and organic acids in wine and grape juices by HPLC: method validation and characterization of products from northeast Brazil. J Food Compos Anal 66:160–167CrossRefGoogle Scholar
  12. Doco T, Williams P, Meudec E, Cheynier V, Sommerer N (2014) Complex carbohydrates of red wine: characterization of the extreme diversity of neutral oligosaccharides by ESI-MS. J Agric Food Chem 63:671–682CrossRefGoogle Scholar
  13. Dutra MCP, De Souza JF, Viana AC, De Oliveira D, Pereira GE, Dos Santos Lima M (2018a) Rapid determination of the aromatic compounds methyl-anthranilate, 2′-aminoacetophenone and furaneol by GC-MS: method validation and characterization of grape derivatives. Food Res Int 107:613–618CrossRefGoogle Scholar
  14. Dutra MCP, Rodrigues LL, Viana AC, De Oliveira D, Pereira GE, Dos Santos Lima M (2018b) Integrated analyses of phenolic compounds and minerals of Brazilian organic and conventional grape juices and wines: validation of a method for determination of Cu, Fe and Mn. Food Chem 269:157–165CrossRefGoogle Scholar
  15. Eurachem (2014). Eurachem guide: the fitness for purpose of analytical methods—a laboratory guide to method validation and related topics. In: Magnusson B, Örnemark U (eds) 2nd ed. ISBN 978-91-87461-59-0. www.eurachem.org Accessed 18 Aug 2018
  16. Florowska A, Krygier K, Florowski T, Duewska E (2016) Prebiotics as functional food ingredients preventing diet-related diseases. Food Funct 7:2147–2155CrossRefGoogle Scholar
  17. García M, Apolinar-Valiente R, Williams P, Zarzoso BE, Arroyo T, Crespo J, Doco Thierry (2017) Polysaccharides and Oligosaccharides Produced on Malvar Wines Elaborated with Torulaspora delbrueckii CLI 918 and Saccharomyces cerevisiae CLI 889 native yeasts from D.O. “Vinos de Madrid”. J Agric Food Chem 65:6656–6664CrossRefGoogle Scholar
  18. Ghfar AA, Wabaidur SM, Ahmed AYBH, Alothman ZA, Khan MR, Al-Shaalan NH (2015) Simultaneous determination of monosaccharides and oligosaccharides in dates using liquid chromatography–electrospray ionization mass spectrometry. Food Chem 176:487–492CrossRefGoogle Scholar
  19. Hubaux A, Vos G (1970) Decision and detection limits for linear calibration curves. Anal Chem 42:849–855CrossRefGoogle Scholar
  20. Lapuente LM, Valiente RA, Guadalupe Z, Ayestarán B, Magariño SP, Williams P, Doco T (2016) Influence of grape maturity on complex carbohydrate composition of red sparkling wines. J Agric Food Chem 64:5020–5030CrossRefGoogle Scholar
  21. Lima MS, Silani ISV, Toaldo IM, Correa LC, Biasoto ACT, Pereira GE, Bordignon-Luiz MT, Ninow JL (2014) Phenolic compounds, organic acids and antioxidante activity of grape juices produced from new Brazilian varieties planted in the Northeast Region of Brazil. Food Chem 161:94–103CrossRefGoogle Scholar
  22. Long WJ, Brooks AE, Biazzo W (2009) Analysis of polar compounds using 100% aqueous mobile phases with agilent ZORBAX eclipse plus phenyl-hexyl and other ZORBAX Phenyl columns. Application note. Agilent Technologies Inc., Santa Clara, CA, USA, pp 1–7. https://www.agilent.com/cs/library/applications/5990-3616EN.pdf Accessed 11 Nov 2018
  23. Maeda T, Watanabe A, Zadrak WD, Osanai S, Honda K, Oku S, Shimura H, Suzuki T, Yamasaki A, Okabe Y, Ueno K, Onodera S (2017) Analysis of varietal differences in the fructo-oligosaccharide accumulation profile among Onion (Allium cepa L.) cultivars grown by spring-sown cultivation. Hortic J 86:501–510CrossRefGoogle Scholar
  24. Malinovska RJ, Kuzmanova S, Winkelhausen A (2014) Oligosaccharide profile in fruits and vegetables as sources of prebiotics and functional foods. Int J Food Prop 17:949–965CrossRefGoogle Scholar
  25. Marrubini G, Appelblad P, Maietta M, Papetti A (2018) Hydrophilic interaction chromatography in food matrices analysis: an updated review. Food Chem 257:53–66CrossRefGoogle Scholar
  26. Morris JR, Striegler KR (2005) Processing fruits: science and technology, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  27. Muir JG, Rose R, Rosella O, Liels K, Barret JS, Shepherd SJ, Gibson PR (2009) Measurement of short-chain carbohydrates in common australian vegetables and fruits by high-performance liquid chromatography (HPLC). J Agric Food Chem 57:554–565CrossRefGoogle Scholar
  28. OIV—Organisation Internationale de la Vigne et du Vin (2011). Recueil des methods internationals d’analyse des vins et des mouts, edition 2011. 8th Assemblée Générale, 21 June 2010, ParisGoogle Scholar
  29. Padilha CVS, Biasoto ACT, Corrêa LC, Lima MS, Pereira GE (2017a) Phenolic compounds profile and antioxidant activity of commercial tropical red wines (Vitis vinifera L.) from São Francisco Valley, Brazil. J Food Biochem 41:1–9CrossRefGoogle Scholar
  30. Padilha CVS, Miskinis GA, De Souza MEAO, Pereira GE, Bordignon-Luiz MT, Lima MS (2017b) Rapid determination of flavonoids and phenolic acids in grape juices and wines by RP-HPLC/DAD: method validation and characterization of commercial products of the new Brazilian varieties of grape. Food Chem 228:106–115CrossRefGoogle Scholar
  31. Rodríguez-Costa S, Cobas AC, Saavedra PR, Arias JJP, Miranda JM, Cepeda A (2018) In vitro evaluation of the prebiotic effect of red and white grape polyphenolic extracts. J Physiol Biochem 74:101–110CrossRefGoogle Scholar
  32. Sabater C, Prodanov M, Olano A, Corzo N, Montilla A (2016) Quantification of prebiotics in commercial infant formulas. Food Chem 194:6–11CrossRefGoogle Scholar
  33. Snow L, Trass M, Klein M, Orlowicz S, Rivera B (2015) Fast and Robust Analysis of Organic Acids from Wine using HPLC-UV. Application note TN-1189, pp 1–8. Phenomenex, Torrance, CA, USA. https://az621941.vo.msecnd.net/documents/0d4a0bb0-f83c-4a26-b928-43649c3ed58a.pdf
  34. Zhu ZY, Lian HY, Si CL, Liu Y, Liu N, Chen J, Ding LN, Yao Q, Zhang Y (2012) The chromatographic analysis of oligosaccharides and preparation of 1-kestose and nystose in yacon. Int J Food Sci Nutr 63:338–342CrossRefGoogle Scholar

Copyright information

© Association of Food Scientists & Technologists (India) 2019

Authors and Affiliations

  • Marcos dos Santos Lima
    • 1
    Email author
  • Polyana Campos Nunes
    • 2
  • Bernadete de Lourdes de Araújo Silva
    • 2
  • Carla Valéria da Silva Padilha
    • 1
  • Thaís Helena Figueiredo do Bonfim
    • 1
  • Tania Lucia Montenegro Stamford
    • 2
  • Margarida Angélica da Silva Vasconcelos
    • 2
  • Jailane de Souza Aquino
    • 3
  1. 1.Departamento de Tecnologia em AlimentosInstituto Federal do Sertão PernambucanoPetrolinaBrazil
  2. 2.Departamento de Nutrição, Centro de Ciências da SaúdeUniversidade Federal de Pernambuco – UFPERecifeBrazil
  3. 3.Departamento de Nutrição, Centro de Ciências da SaúdeUniversidade Federal da Paraíba – UFPBJoão PessoaBrazil

Personalised recommendations