Advertisement

Journal of Food Science and Technology

, Volume 56, Issue 11, pp 4785–4794 | Cite as

In situ surface formation of TiO2/Ti(NO2) hybrid nanocomposites with N2 APPJ treatment for efficient C2H4 photodegradation

  • Wenfeng Zhao
  • Bang Ji
  • Yao Gu
  • Zhou YangEmail author
  • Mingjian Lu
Original Article
  • 23 Downloads

Abstract

TiO2/Ti(NO2) hybrid films were prepared using N2 atmospheric pressure plasma jet treatment on TiO2 coating. The film structure and morphology have been investigated using optical emission spectra, Fourier-transform infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The formed TiO2/Ti(NO2) photocatalystic thin films were applied for C2H4 photodegradation under UV irradiation. The results showed that the composite films exhibited superior photocatalytic activity over the untreated TiO2 film. The C2H4 concentration after 120 min varied from 12 to 6.2 mg/L, 6.7 mg/L, 7 mg/L for TiO2 with 1 min, 2 min and 3 min plasma treatment, respectively. In the banana storage experiment, the concentration of C2H4 was reduced from 15 to 9 ppm after 36 h with TiO2/Ti(NO2) nanocomposite film illuminated by UV light. The photocatalytic mechanism has been discussed. The composite film is able to more effectively separate the photo-excited electrons and holes, thus leading to the much high activity in C2H4 degradation. The current work has paved a way towards postharvest fruit preservation.

Keywords

Photocatalytictitanium oxide Titanium oxynitride Atmospheric pressure plasma jet Photocatalyst C2H4 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51675189) and the fruit production equipment innovation team special funding of Ministry of agriculture.

References

  1. Broder TL, Silvester DS, Aldous L, Hardacre C, Compton RG (2007) Electrochemical oxidation of nitrite and the oxidation and reduction of NO2 in the room temperature ionic liquid [C2mim][NTf2]. J Phys Chem B 111(27):7778–7785CrossRefGoogle Scholar
  2. Chae YK, Mori S, Suzuki M (2009) Visible-light photocatalytic activity of anatase TiO2 treated with argon plasma. Thin Solid Films 517(14):4260–4263CrossRefGoogle Scholar
  3. Cullen PJ, Milosavljevic V (2015) Spectroscopic characterization of a radio-frequency argon plasma jet discharge in ambient air. Prog Theor Exp Phys 6:063J01CrossRefGoogle Scholar
  4. Di J, Xia JX, Ge YP, Xu L, Xu H, He MQ, Zhang Q, Li HM (2014) Reactable ionic liquid-assisted rapid synthesis of BiOI hollow microspheres at room temperature with enhanced photocatalytic activity. J Mater Chem A 2(38):15864–15874CrossRefGoogle Scholar
  5. Di J, Xia JX, Ge YP, Li HP, Ji HY, Xu H, Zhang Q, Li HM, Li MN (2015) Novel visible-light-driven CQDs/Bi2WO6 hybrid materials with enhanced photocatalytic activity toward organic pollutants degradation and mechanism insight. Appl Catal B Environ 168:51–61CrossRefGoogle Scholar
  6. Fakhouri H, Ben Salem D, Carton O, Pulpytel J, Arefi-Khonsari F (2014) Highly efficient photocatalytic TiO2 coatings deposited by open air atmospheric pressure plasma jet with aerosolized TTIP precursor. J Phys D Appl Phys 47(26):265301CrossRefGoogle Scholar
  7. Fujisawa J, Hanaya M (2018) Light harvesting and direct electron injection by interfacial charge-transfer transitions between TiO2 and carboxy-anchor dye LEG4 in dye-sensitized solar cells. J Phys Chem C 122(1):8–15CrossRefGoogle Scholar
  8. Hussain M, Bensaid S, Geobaldo F, Saracco G, Russo N (2011) Photocatalytic degradation of ethylene emitted by fruits with TiO2 nanoparticles. Ind Eng Chem Res 50(5):2536–2543CrossRefGoogle Scholar
  9. Kan K, Xia TL, Li L, Bi HM, Fu HG, Shi KY (2009) Amidation of single-walled carbon nanotubes by a hydrothermal process for the electrooxidation of nitric oxide. Nanotechnology 20(18):185502CrossRefGoogle Scholar
  10. Li QM, Satur DLG, Kim H, Kim HG (2012) Preparation of sol–gel modified electrospun TiO2 nanofibers for improved photocatalytic decomposition of ethylene. Mater Lett 76:169–172CrossRefGoogle Scholar
  11. Li L, Chen Z, Hu Y, Wang XW, Zhang T, Chen W, Wang QB (2013) Single-layer single-crystalline SnSe nanosheets. J Am Chem Soc 135(4):1213–1216CrossRefGoogle Scholar
  12. Lin YT, Weng CH, Chen FY (2014) Key operating parameters affecting photocatalytic activity of visible-light-induced C-doped TiO2 catalyst for ethylene oxidation. Chem Eng J 248:175–183CrossRefGoogle Scholar
  13. Long PQ, Zhang YH, Chen XX, Yi ZG (2015) Fabrication of YxBi1−xVO4 solid solutions for efficient C2H4 photodegradation. J Mater Chem A 3(8):4163–4169CrossRefGoogle Scholar
  14. Luo ZW, Jiang H, Hu LZ, Li D, Geng WH, Wei P (2014) Effect of N2/Ar plasma treatment on the visible light photocatalytic activity of CuO/TiO2. Chin J Catal 35(10):1752–1760CrossRefGoogle Scholar
  15. Mei XY, Yan QH, Lu P, Wang JY, Cui YH, Nie Y, Umar A, Wang Q (2017) Synthesis of Pt/K2CO3/MgAlOx—reduced graphene oxide hybrids as promising NOx storage–reduction catalysts with superior catalytic performance. Sci Rep UK 7:42862CrossRefGoogle Scholar
  16. Rodríguez JA, Evans J, Graciano J, Park JB, Liu P, Hrbek J, Sanz JF (2009) High water-gas shift activity in TiO2(110) supported Cu and Au nanoparticles: role of the oxide and metal particle size. J Phys Chem C 113(17):7364–7370CrossRefGoogle Scholar
  17. Schutze A, Jeong JY, Babayan SE, Park J, Selwyn GS, Hicks RF (1998) The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. IEEE Trans Plasma Sci 26:1685–1694CrossRefGoogle Scholar
  18. Singh J, Sahu K, Pandey A, Kumar M, Ghosh T, Satpati B, Som T, Varma S, Avasthi DK, Mohapatra S (2017) Atom beam sputtered Ag–TiO2 plasmonic nanocomposite thin films for photocatalytic applications. Appl Surf Sci 411:347–354CrossRefGoogle Scholar
  19. Stucchi M, Bianchi CL, Argirusis C, Pifferi V, Neppolian B, Cerrato G, Boffito DC (2018) Ultrasound assisted synthesis of Ag-decorated TiO2 active in visible light. Ultrasonics-Sonochemistry 40:282–288CrossRefGoogle Scholar
  20. Su CY, Liu L, Zhang MY, Zhang Y, Shao CL (2012) Fabrication of Ag/TiO2 nanoheterostructures with visible light photocatalytic function via a solvothermal approach. CrystEngComm 14(11):3989–3999CrossRefGoogle Scholar
  21. Trejo-Tzab R, Alvarado-Gil JJ, Quintana P, Bartolo-Pérez P (2012) N-doped TiO2 P25/Cu powder obtained using nitrogen (N2) gas plasma. Catal Today 193(1):179–185CrossRefGoogle Scholar
  22. Truscott BS, Kelly MW, Potter KJ, Johnson M, Ashfold MNR, Mankelevich YA (2015) Microwave plasma-activated chemical vapor deposition of nitrogen-doped diamond. I. N-2/H-2 and NH3/H-2 pPasmas. J Phys Chem A 120(43):8537–8549CrossRefGoogle Scholar
  23. Wang WJ, Huang GC, Yu JC, Wong PK (2015) Advances in photocatalytic disinfection of bacteria: development of photocatalysts and mechanisms. J Environ Sci China 34:232–247CrossRefGoogle Scholar
  24. Yang GD, Jiang Z, Shi HH, Xiao TC, Yan ZF (2010) Preparation of highly visible-light active N-doped TiO2 photocatalyst. J Mater Chem 20(25):5301–5309CrossRefGoogle Scholar
  25. Yao YC, Dai XR, Hu XY, Huang SZ, Jin Z (2016) Synthesis of Ag-decorated porous TiO2 nanowires through a sunlight induced reduction method and its enhanced photocatalytic activity. Appl Surf Sci 387:469–476CrossRefGoogle Scholar
  26. Ye SY, Fang YC, Song XL, Luo SC, Ye LM (2013) Decomposition of ethylene in cold storage by plasma-assisted photocatalyst process with TiO2/ACF-based photocatalyst prepared by gamma irradiation. Chem Eng J 225:499–508CrossRefGoogle Scholar
  27. Ye SY, Zheng SH, Song XL, Luo SC (2015) Photoelectrocatalytic decomposition of ethylene using TiO2/activated carbon fiber electrode with applied pulsed direct current square-wave potential. Appl Surf Sci 341:61–68CrossRefGoogle Scholar
  28. Zhan FQ, Li J, Li WZ, Liu YS, Xie RR, Yang YH, Li YM, Chen QY (2015) In situ formation of CuWO4/WO3 heterojunction plates array films with enhanced photoelectrochemical properties. Int J Hydrog Energy 40(20):6512–6520CrossRefGoogle Scholar
  29. Zhang Y, Park M, Kim HY, Park SJ (2016) In-situ synthesis of graphene oxide/BiOCl heterostructured nano fibers for visible-light photocatalytic investigation. J Alloy Compd 686:106–114CrossRefGoogle Scholar
  30. Zhao WR, Ai ZY, Dai JS, Zhang M (2014) Enhanced photocatalytic activity for H2 evolution under irradiation of UV–Vis light by Au-modified nitrogen-doped TiO2. PLoS One 9(8):e103671CrossRefGoogle Scholar
  31. Zhu YY, Ling Q, Liu YF, Wang H, Zhu YF (2015) Photocatalytic H2 evolution on MoS2–TiO2 catalysts synthesized via mechanochemistry. Phys Chem Chem Phys 17(2):933–940CrossRefGoogle Scholar

Copyright information

© Association of Food Scientists & Technologists (India) 2019

Authors and Affiliations

  1. 1.College of Electronic EngineeringSouth China Agricultural UniversityGuangzhouChina
  2. 2.College of EngineeringSouth China Agricultural UniversityGuangzhouChina

Personalised recommendations