Advertisement

Yeast (Saccharomyces cerevisiae): evaluation of cellular disruption processes, chemical composition, functional properties and digestibility

  • Angélica Patrícia Bertolo
  • Ana Paula Biz
  • Aniela Pinto Kempka
  • Elisandra Rigo
  • Darlene CavalheiroEmail author
Original Article
  • 16 Downloads

Abstract

The objective of this study was to evaluate yeast (Saccharomyces cerevisiae) from beer fermentation in its natural form (NY) and subjected to different processes of cellular ruptured [mechanical method using ultrasound (MRY) and modified autolysis using NaCl and ethanol (MAY)] regarding functional and digestibility properties, comparing them with textured soy protein (TSP). Ultrasound treatment resulted in 42% disruption efficiency and the micrographs obtained from scanning electron microscopy analysis showed important morphological modifications due to processes of cellular ruptured action. MRY cells presented more pronounced damage than LN, which suggests the rupture of the cell wall and exit of the internal material to the medium. NY, MRY, MAY, and TSP presented a very close composition concerning the protein content, ranging from 39.32 to 43.80% and moisture of 0.07–0.14%. In vitro digestibility of brewing yeast samples equated the digestibility of TSP (higher than 94%). Cellular disruption with ultrasound (MRY) caused an increase in foaming ability, stability and also oil retention capacity (8.82 mL of oil/g of protein). Modified autolysis (MAY) resulted in higher water holding capacity (14.50 g of water/g of protein) and index of water solubility (greater than 64%) with a decrease in their emulsifying properties. The highest water absorption capacity was presented by the TSP and NY. Therefore, in its different forms, yeast can be applied as a functional and technological ingredient in the food industry, with significant technological capabilities and potential applications.

Keywords

Beer biomass Ultrasound Autolysis Characterization Technological ingredient 

Notes

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES)—Finance Code 001 and by FAPESC (Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina—Grant: 2015TR295).

References

  1. Anderson RA, Conway HF, Pfeifer UF, Griffin EL Jr (1969) Gelatinization of corn grits by roll and extrusion cooking. Cereal Sci Today St. Paul Minn 14(1):4–11Google Scholar
  2. AOAC (2005) Official methods of analysis of the Association Analytical Chemists, 18th edn. Gaithersburg, MarylandGoogle Scholar
  3. Babayan TL, Bezrukov MG, Latov VK, Belikov VM, Belavtseva EM (1981) Induced autolysis of Saccharomyces cerevisae: morphological effects, rheological, effects, and dynamics of accumulation of extracellular hydrolysis products. Curr Microbiol New York 5(3):163–168CrossRefGoogle Scholar
  4. Bzducha-Wróbel A, Błażejak S, Kieliszek M, Pobiega K, Falana K, Janowicz M (2018) Modification of the cell wall structure of Saccharomyces cerevisiae strains during cultivation on waste potato juice water and glycerol towards biosynthesis of functional polysaccharides. J Biotechnol 281:1–10CrossRefGoogle Scholar
  5. Canella M (1978) Whipping properties of sunflower proteins dispersions. Food Sci Technol 11:259–260Google Scholar
  6. Charpentier C, Nguyen Van Long T, Bonaly R, Feuillat M (1986) Alteration of cell wall structure in Saccharomyces cerevisiae and Saccharomyces bayanus during autolysis. Appl Microbiol Biothecnol 24(5):405–413CrossRefGoogle Scholar
  7. Chaud SG, Sgarbieri VC (2006) Propriedades funcionais (tecnológicas) da parede celular de leveduras da fermentação alcoólica e das frações glicana, manana e glicoproteína. Ciência e Tecnologia de Alimentos Campinas 26(2):369–379CrossRefGoogle Scholar
  8. Costa AG, Magnani M, Castro-Gomez RJH (2012) Obtenção e caracterização de manoproteínas da parede celular de leveduras de descarte em cervejaria. Acta Scientiarum. Biol Sci 34(1):77–84Google Scholar
  9. da Araújo VBS, de Melo ANF, Costa AG, Castro-Gomez RH, Madruga MS, de Souza EL, Magnani M (2014) Followed extraction of β-glucan and mannoprotein from spent brewer’s yeast (Saccharomyces uvarum) and application of the obtained mannoprotein as a stabilizer in mayonnaise. Innov Food Sci Emerg Technol 23:164–170CrossRefGoogle Scholar
  10. de Câmara AA, Jr DupontS, Beney L, Gervais P, Rosenthal A, Correia RTP, Pedrini MRS (2016) Fisetin yeast-based bio-capsules via osmoporation: effects of process variables on the encapsulation efficiency and internalized fisetin content. Appl Microbiol Biotechnol 100(12):5547–5558CrossRefGoogle Scholar
  11. Demirci A, Pometto AL (1999) Production of organically bound selenium yeast by continuous fermentation. J Agric Food Chem 47(6):2491–2495CrossRefGoogle Scholar
  12. Fennema OR (2000) Química de los Alimentos, 1st edn. Acribia, Zaragoza, p 1280Google Scholar
  13. Francis FJ, Clydesdale FM (1975) Food colorimetry: theory and applications. AVI, WesportGoogle Scholar
  14. Garba U, Kaur S (2014) Protein isolates: production, functional properties and application. Int J Curr Res Rev 6(3):35–45Google Scholar
  15. Halász A, Lásztity R (1991) Use of yeast biomass in food production. CRC Press, Boca Raton, p 312Google Scholar
  16. Hellborg L, Piskur J (2009) Yeast diversity in the brewing industry. In: Preedy VR (ed) Beer in health and disease prevention. Elsevier, New York, pp 1068–1073Google Scholar
  17. Karki B, Lamsal BP, Jung S, Van Leeuwen J, Pometto AL, Grewell D, Khanal SK (2010) Enhancing protein and sugar release from defatted soy flakes using ultrasound technology. J Food Eng 96(2):270–278CrossRefGoogle Scholar
  18. Lee MK, Lee SY (2009) The quality characteristics of Soy Wan-Jas made with different proteolytic enzyme treated textured soy proteins. Appl Biol Chem 52(6):708–715Google Scholar
  19. Lee SS, Robinson FM, Wang HY (1981) Rapid determination of yeast viability. Biotechnol Bioeng Symp 11:641–649Google Scholar
  20. Lopes AS, Mattietto RA, Menezes HC (2005) Estabilidade da polpa de pitanga sob congelamento. Ciência e Tecnologia de Alimentos, Campinas 25(3):553–559CrossRefGoogle Scholar
  21. Malik MA, Sharma HK, Saini CS (2017) High intensity ultrasound treatment of protein isolate extracted from dephenolized sunflower meal: effect on physicochemical and functional properties. Ultrason Sonochem 39:511–519CrossRefGoogle Scholar
  22. Martínez JM, Cebrián G, Álvarez I, Raso J (2016) Release of Mannoproteins during Saccharomyces cerevisiae autolysis induced by pulsed electric field. Front Microbiol 7:1475CrossRefGoogle Scholar
  23. Moreira TCP, da Silva VM, Gombert AK, da Cunha RL (2016) Stabilization mechanisms of oil-in-water emulsions by Saccharomyces cerevisiae. Colloids Surf Biointerfaces 143:399–405CrossRefGoogle Scholar
  24. Mussatto SI, Dragone G, Roberto IC (2006) Brewers’ spent grain: generation, characteristics and potential application. J Cereal Sci 43(1):1–14CrossRefGoogle Scholar
  25. Oliveira MS, Feddern V, Kupski L, Cipolatti EP, Badiale-Furlong E, de Souza-Soares LA (2010) Physico-chemical characterization of fermented rice bran biomass. J Food 8(3):229–236Google Scholar
  26. Oshodi AA, Ojokan E (1997) Effect of salts on some of the functional properties of bovine plasma protein concentrate. Food Chem 59(3):333–338CrossRefGoogle Scholar
  27. Otero MA, Vasallo MC, Verdieia O, Fernandez V, Betancourt D (1996) A process for the complete fractionation of baker’s yeast. J Chem Technol Biotechnol 67(1):67–71CrossRefGoogle Scholar
  28. Pacheco MTB, Sgarbieri VC (1998) Hydrophilic and rheological properties of Brewer’s yeast protein concentrates. J Food Sci 63(2):238–243CrossRefGoogle Scholar
  29. Pacheco MTB, Caballero-Cordoba GM, Sgarbieri VC (1997) Composition and nutritive value of yeast biomass and yeast protein concentrates. J Nutr Sci Vitaminol Tokyo 43(6):601–612CrossRefGoogle Scholar
  30. Ramos GRV, Birchal VS, Seara LM, Pereira FD, Alvisi P (2011) Caracterização química do autolisado de levedura de alambique e avaliação da aceitabilidade do pão de queijo adicionado do autolisado desidratado. Revista de Nutrição Campinas 24(3):473–484CrossRefGoogle Scholar
  31. Reed G, Nagodawithana TW (1991) Yeast technology, 2nd edn. Van Nostrand Reinhold, New York, p 378Google Scholar
  32. Sarwar G, Shah BG, Mongeau R, Hoppner K (1985) Nucleic acid, fiber and nutrient composition of intactive dried food yeast products. J Food Sci 50:353–357CrossRefGoogle Scholar
  33. Sgarbieri VC (1996) Proteínas em Alimentos Protéicos. Propriedades – Degradações – Modificações. Livraria Varela, São PauloGoogle Scholar
  34. Sgarbieri VC, Alvim ID, Vilela ES, Baldini VL, Bragagnolo N (1999) Produção Piloto de Derivados de Levedura (Saccharomyces sp.) para Uso como Ingrediente na Formulação de Alimentos. Braz J Food Technol 2(1–2):119–125Google Scholar
  35. Silva FA, Marsaioli A Jr (2003) Atividade de água em amêndoas de castanha do Brasil (Bertholletia excelsa) secas por micro-ondas e convencionalmente. Revista Ciências Exatas e Naturais Campinas 5(1):23–32Google Scholar
  36. Stewart GG (2016) Saccharomyces species in the Production of Beer. Beverages 2(4):34CrossRefGoogle Scholar
  37. Wang JC, Kinsella JE (1976) Functional properties of novel proteins: Alfalfa Leaf protein. J Food Sci 41:286–292CrossRefGoogle Scholar
  38. Wasswa J, Tang J, Gu X, Yuan X (2007) Influence of the extent of enzymatic hydrolysis on the functional properties of protein hydrolysate from grass carp (Ctenopharyngodon idella) skin. Food Chem 104(4):1698–1704CrossRefGoogle Scholar
  39. Yamada EA, Sgarbieri VC (2005) Yeast (Saccharomyces cerevisiae) protein concentrate: preparation, chemical composition, and nutritional and functional properties. J Agric Food Chem 53(10):3931–3936CrossRefGoogle Scholar
  40. Yamada EA, Alvim ID, Santucci MCC, Sgarbieri VC (2003) Composição centesimal e valor protéico de levedura residual da fermentação etanólica e de seus derivados. Revista Nutrição. Instituto de Tecnologia de Alimentos Campinas 16(4):423–432Google Scholar

Copyright information

© Association of Food Scientists & Technologists (India) 2019

Authors and Affiliations

  1. 1.Food Engineering and Chemical Engineering DepartmentState University of Santa CatarinaPinhalzinhoBrazil
  2. 2.Federal University of ParanáCuritibaBrazil

Personalised recommendations