Advertisement

Journal of Food Science and Technology

, Volume 56, Issue 7, pp 3225–3238 | Cite as

Purple pigment from Peltogyne mexicana heartwood as a potential colorant for food

  • Paulina Gutiérrez-Macías
  • Cinthya G. Gutiérrez-Zúñiga
  • Leticia Garduño-Siciliano
  • Cynthia Ordaz-Pichardo
  • Myriam Arriaga-Alba
  • Blanca E. Barragán-HuertaEmail author
Original Article
  • 17 Downloads

Abstract

Peltogyne mexicana heartwood might be a novel purple pigment source. The results of the present study demonstrate that the purple pigment is an important source of phenolic compounds (698.22 ± 2.99 mg GAE/g) and flavonoids (48.01 ± 0.51 mg EPE/g). UV–Vis spectrum and color parameters (L* a* b*) showed that purple pigment has different shades of purple–red (H° value 19.32 ± 0.02 in methanol and 22.85 ± 0.01 in ethanol) depending on the solvent and the pH. Also, the purple pigment did not exhibit acute oral toxicity at a single dose (2000 mg/kg body weight). No mutagenicity was observed in the Ames test with three Salmonella typhimurium strains. The purple pigment exhibited considerable coloring properties with a wider range of citric acid-dependent color hues in gelatin (H° from 280.3 to 319.9 and from 68.0 to 88.1), and higher color intensity than commercial anthocyanin. Minor variations in the hue were found in yogurt, for purple pigment with H° values from 317.5 to 315.0, and commercial anthocyanin from 82.6 to 88.7 and 276.9 to 295.5. However, purple pigment required lower concentrations to achieve superior effects. For gelatin and yogurt samples, similar variations in the color parameters L*, a*, b*, and pigment degradation were observed for purple pigment and commercial anthocyanin in the stability assay.

Graphical abstract

Keywords

Peltogyne mexicana heartwood Purple pigment Acute toxicity Mutagenicity Color stability 

Abbreviations

ANT

Anthocyanin

MI

Mutagenic index

NMNG

N-methyl-N′-nitro-N-nitrosoguanidine

OQ

Oxide-4-nitroquinone

PA

Picrolonic acid

PP

Purple pigment

Notes

Acknowledgements

The authors express their gratitude to Consejo Nacional de Ciencia y Tecnologia (CONACyT Project CB-2011-01-169779) and Instituto Politécnico Nacional (Project SIP 20195891) for the financial support. P. Gutiérrez-Macías received a graduate scholarship from the CONACyT.

Supplementary material

13197_2019_3779_MOESM1_ESM.docx (986 kb)
Supplementary material 1 (DOCX 986 kb)

References

  1. Acosta-Estrada BA, Gutiérrez-Uribe JA, Serna-Saldívar SO (2014) Bound phenolics in foods, a review. Food Chem 152:46–55CrossRefGoogle Scholar
  2. Ahmed J, Shivhare US, Ramaswamy HS (2004) A fraction conversion kinetic model for thermal degradation of color in red chilli puree and paste. LWT Food Sci Technol 35:497–503CrossRefGoogle Scholar
  3. Ames BN, Durston WE, Yamasaki DE, Frank DL (1973) Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc Natl Acad Sci USA 70:2281–2285CrossRefGoogle Scholar
  4. Arici M, Karasu S, Baslar M, Toker OS, Sagdic O, Karaagacli M (2016) Tulip petal as a novel natural food colorant source: extraction optimization and stability studies. Ind Crops Prod 91:215–222CrossRefGoogle Scholar
  5. Behera PK, Mohapatra S, Patel S, Mishra BK (2005) Dye–surfactant interaction: solubilization of styryl pyridinium dyes of varying alkyl chain in alfa-olefinic sulfonate and linear alkyl benzene sulfonate solutions. J Photochem Photobiol A 169(3):253–260CrossRefGoogle Scholar
  6. Bernstein L, Kaldor J, McCann J, Pike MC (1982) An empirical approach to the statistical analysis of mutagenesis data from the Salmonella test. Mutat Res 97:267–281CrossRefGoogle Scholar
  7. Bolton J (2014) Quinone methide bioactivation pathway: Contribution to toxicity and/or cytoprotection? Curr Org Chem 18(1):61–69CrossRefGoogle Scholar
  8. Bontempo P, De-Masi L, Carafa V, Rigano D, Scisciola L, Iside C, Grassi R, Molinari AM, Aversano R, Nebbioso A, Carputo D, Altucci L (2015) Anticancer activities of anthocyanin extract from genotyped Solanum tuberosum L. “Vitelotte”. J Funct Foods 19:584–593CrossRefGoogle Scholar
  9. Brauch JE, Zapata-Porras SP, Buchweitz M, Aschoff JK, Carle R (2016) Jagua blue derived from Genipa americana L. fruit: a natural alternative to commonly used blue food colorants? Food Res Int 89:391–398CrossRefGoogle Scholar
  10. Castañeda-Ovando A, Pacheco-Hernández ML, Páez-Hernández ME, Rodríguez JA, Galán-Vidal CA (2009) Chemical studies of anthocyanins: a review. Food Chem 113(4):859–871CrossRefGoogle Scholar
  11. Cerezal-Mezquita P, Barragán-Huerta BE, Ramírez JCP, Hinojosa CPO (2014) Stability of astaxanthin in yogurt used to simulate apricot color, under refrigeration. Food Sci Technol (Campinas) 34(3):559–565CrossRefGoogle Scholar
  12. Cerezal-Mezquita P, Barragán-Huerta BE, Ramírez JCP, Hinojosa CPO (2015) Milks pigmentation with astaxanthin and determination of colour stability during short period cold storage. J Food Sci Technol 52(3):1634–1641CrossRefGoogle Scholar
  13. Choi M, Kim G, Lee HS (2002) Effects of ascorbic acid retention on juice colour and pigment stability in blood orange (Citrus sinensis) juice during refrigerated storage. Food Res Int 35:753–759CrossRefGoogle Scholar
  14. Chung C, Rojanasasithara T, Mutilangi W, McClements DJ (2016) Enhancement of colour stability of anthocyanins in model beverages by gum arabic addition. Food Chem 201:14–22CrossRefGoogle Scholar
  15. Cisowska A, Wojnicz D, Hendrich AB (2011) Anthocyanins as antimicrobial agents of natural plant origin. Nat Prod Commun 6(1):149–156Google Scholar
  16. Giménez PJ, Fernández-López JA, Angosto JM, Obón JM (2015) Comparative thermal degradation patterns of natural yellow colorants used in foods. Plant Foods Hum Nutr 70(4):380–387CrossRefGoogle Scholar
  17. Gutiérrez-Macías P, Peralta-Cruz J, Borja-de-la-Rosa A, Barragán-Huerta BE (2016) Peltomexicanin, a peltogynoid quinone methide from Peltogyne Mexicana Martínez purple heartwood. Molecules 21(2):186CrossRefGoogle Scholar
  18. Gutiérrez-Zúñiga CG, Arriaga-Alba M, Ordaz-Pichardo C, Gutiérrez-Macías P, Barragán-Huerta BE (2014) Stability in candy products of neocandenatone, a non-genotoxic purple pigment from Dalbergia congestiflora heartwood. Food Res Int 65:263–271CrossRefGoogle Scholar
  19. Hou Z, Qin P, Zhang Y, Cui S, Ren G (2011) Identification of anthocyanins isolated from black rice (Oryza sativa L.) and their degradation kinetics. Food Res Int 50(2):691–697CrossRefGoogle Scholar
  20. Hubbermann EM, Heins A, Stockmann H, Schwarz K (2006) Influence of acids, salt, sugars and hydrocolloids on the colour stability of anthocyanin rich black currant and elderberry concentrates. Eur Food Res Technol 223(1):83–90CrossRefGoogle Scholar
  21. Kaur P, Singh N, Pal P, Kaur A (2018) Variation in composition, protein and pasting characteristics of different pigmented and non pigmented rice (Oryza sativa L.) grown in Indian Himalayan region. J Food Sci Technol 55(9):3809–3820CrossRefGoogle Scholar
  22. Maier T, Fromm M, Schieber A, Kammerer DR, Carle R (2009) Process and storage stability of anthocyanins and non-anthocyanin phenolics in pectin and gelatine gels enriched with grape pomace extracts. Eur Food Res Technol 229(6):949–960CrossRefGoogle Scholar
  23. Margolin BH, Kaplan N, Zeigert E (1981) Statistical analysis of the Ames Salmonella/microsome test. Genetics 78:3779–3783Google Scholar
  24. Mojica L, Berhow M, de-Mejia EG (2017) Black bean anthocyanin-rich extracts as food colorants: physicochemical stability and antidiabetes potential. Food Chem 229:628–639CrossRefGoogle Scholar
  25. Moreira MM, Barroso MF, Boeykens A, Withouck H, Morais S, Delerue-Matos C (2017) Valorization of apple tree wood residues by polyphenols extraction: comparison between conventional and microwave-assisted extraction. Ind Crop Prod 104:210–220CrossRefGoogle Scholar
  26. Navarro-Martínez J, Borja-de la Rosa A, Machuca-Velasco R (2005) Características tecnológicas de la madera de palo morado (Peltogyne mexicana Martínez) de Tierra Colorada, Guerrero, México. Rev Chapingo Ser CIE 11(1):73–82Google Scholar
  27. Nontasan S, Moongngarm A, Deeseenthum S (2012) Application of functional colorant prepared from black rice bran in yogurt. APCBEE Procedia 2:62–67CrossRefGoogle Scholar
  28. Norma Oficial Mexicana NOM-062-ZOO-1999. Especificaciones técnicas para la producción, cuidado y uso de animales de laboratorio, Diario Oficial de la Federación, MéxicoGoogle Scholar
  29. Organization for Economic Cooperation and Development (OECD) (2001) Guideline 423. Acute oral toxicity—acute toxic class method. 470 Adopted by the Council on 17th Dec 2001Google Scholar
  30. Pérez-Loredo MG, García-Ochoa F, Barragán-Huerta BE (2016) Comparative analysis of betalain content in Stenocereus stellatus fruits and other cactus fruits using principal component analysis. Int J Food Prop 19(2):326–338CrossRefGoogle Scholar
  31. Robinson GM, Robinson R (1935) 167. Leuco-anthocyanins and leuco-anthocyanidins. Part I. The isolation of peltogynol and its molecular structure. J Chem Soc (Resumed).  https://doi.org/10.1039/JR9350000744 Google Scholar
  32. Rodríguez-Sánchez JA, Cruz-y-Victoria MT, Barragán-Huerta BE (2017) Betaxanthins and antioxidant capacity in Stenocereus pruinosus: stability and use in food. Food Res Int 91:63–71CrossRefGoogle Scholar
  33. Saha JBT, Abia D, Dumarçay S, Ndikontar MK, Gérardin P, Noah JN, Perrin D (2013) Antioxidant activities, total phenolic contents and chemical compositions of extracts from four Cameroonian woods: Padouk (Pterocarpus soyauxii Taubb), tali (Erythrophleum suaveolens), moabi (Baillonella toxisperma), and movingui (Distemonanthus benthamianus). Ind Crop Prod 41:71–77CrossRefGoogle Scholar
  34. Ścibisz I, Ziarno M, Mitek M, Zaręba D (2012) Effect of probiotic cultures on the stability of anthocyanins in blueberry yoghurts. LWT Food Sci Technol 49(2):208–212CrossRefGoogle Scholar
  35. Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In: Packer L (ed) Methods in enzymology, vol 299. Academic Press, Cambridge, pp 152–178Google Scholar
  36. Stevens LJ, Kuczek T, Burgess JR, Stochelski MA, Arnold LE, Galland L (2013) Mechanisms of behavioural, atopic, and other reactions to artificial food colors in children. Nutr Rev 71(5):268–281CrossRefGoogle Scholar
  37. Szymanowska U, Złotek U, Karaś M, Baraniak B (2015) Anti-inflammatory and antioxidative activity of anthocyanins from purple basil leaves induced by selected abiotic elicitors. Food Chem 172:71–77CrossRefGoogle Scholar
  38. Trehan S, Singh N, Kaur A (2018) Characteristics of white, yellow, purple corn accessions: phenolic profile, textural, rheological properties and muffin making potential. J Food Sci Technol 55(6):2334–2343CrossRefGoogle Scholar
  39. Wallace TC, Giusti MM (2008) Determination of color, pigment, and phenolic stability in yogurt systems colored with nonacylated anthocyanins from Berberis boliviana L. as compared to other natural/synthetic colorants. J Food Sci 73(4):C241–C248CrossRefGoogle Scholar
  40. Wang J, Zhao XH (2016) Degradation kinetics of fisetin and quercetin in solutions as effected by pH, temperature and coexisted proteins. J Serb Chem Soc 81(3):243–253CrossRefGoogle Scholar
  41. Xu BJ, Chang SKC (2007) A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J Food Sci 72(2):S159–S166CrossRefGoogle Scholar
  42. Žilić S, Kocadağlı T, Vančetović J, Gökmen V (2016) Effects of baking conditions and dough formulations on phenolic compound stability, antioxidant capacity and color of cookies made from anthocyanin-rich corn flour. LWT Food Sci Technol 65:597–603CrossRefGoogle Scholar

Copyright information

© Association of Food Scientists & Technologists (India) 2019

Authors and Affiliations

  • Paulina Gutiérrez-Macías
    • 1
  • Cinthya G. Gutiérrez-Zúñiga
    • 1
  • Leticia Garduño-Siciliano
    • 2
  • Cynthia Ordaz-Pichardo
    • 3
  • Myriam Arriaga-Alba
    • 4
  • Blanca E. Barragán-Huerta
    • 1
    Email author
  1. 1.Departamento de Ingeniería en Sistemas AmbientalesEscuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalCDMXMexico
  2. 2.Laboratorio de Toxicología de Productos Naturales, Departamento de FarmaciaEscuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalCDMXMexico
  3. 3.Laboratorio de Biología Celular y Productos NaturalesEscuela Nacional de Medicina y Homeopatía, Instituto Politécnico NacionalCDMXMexico
  4. 4.Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCDMXMexico

Personalised recommendations