Advertisement

Effect of cacao bean quality grade on cacao quality evaluation by cut test and correlations with free amino acids and polyphenols profiles

  • Germaine Audrey Ngouambe Tchouatcheu
  • Alexandre Mboene Noah
  • Reinhard Lieberei
  • Nicolas NiemenakEmail author
Original Article
  • 49 Downloads

Abstract

Cacao fermentation induces biochemical changes in the beans that lead to different cacao grades such as slaty (unfermented), violet (under fermented) and brown (fully fermented) beans. This grade heterogeneity in a sample set can impact the quality of the end-products. In the present study, amino acids and polyphenol contents of slaty, violet and brown beans were evaluated. Free amino acids were derivatized from o–phthalaldehyde and detected with a fluorescence spectrophotometer coupled with a reverse phase HPLC system. Polyphenols were analysed at 280 nm by HPLC using a Photodiode Array Detector. Amino acids content in the violet beans were significantly higher (11,165 ± 4281 mg kg−1 fat free dry material, ffdm) than that of the slaty beans (4304.5 ± 1927.6 mg kg−1 ffdm), meanwhile there was no significant difference between violet and brown beans. Epicatechin, catechin, cyanidin-3-arabinoside and cyanidin-3-galactoside contents were significantly lower in violet and brown beans when compared to slaty beans. Our results have shown that a mixture of violet and brown beans is suitable to obtain polyphenols and amino acids in the development of cacao products.

Keywords

Cacao quality Cut-test Fermentation processes Free amino acids Polyphenols 

Notes

Acknowledgements

N. Niemenak acknowledges financial support from Humboldt foundation (www.humboldt-foundation.de).

Supplementary material

13197_2019_3749_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 15 kb)
13197_2019_3749_MOESM2_ESM.docx (16 kb)
Supplementary material 2 (DOCX 15 kb)
13197_2019_3749_MOESM3_ESM.docx (310 kb)
Supplementary material 3 (DOCX 310 kb)
13197_2019_3749_MOESM4_ESM.docx (220 kb)
Supplementary material 4 (DOCX 219 kb)

References

  1. Banchuen J, Thammarutwasik P, Ooraikul B, Wuttijumnong P, Sirivongpaisal P (2010) Increasing the bio-active compounds contents by optimizing the germination conditions of Southern Thai brown rice. Songklanakarin J Sci Technol 32(3):219–230Google Scholar
  2. Bhanwar S, Bamnia M, Ghosh M, Ganguli A (2013) Use of Lactococcus lactis to enrich sourdough bread with γ-aminobutyric acid. Int J Food Sci Nutr 64:77–81CrossRefGoogle Scholar
  3. Biehl B, Passern D (1982) Proteolysis during fermentation like incubation of cocoa seeds. J Sci Food Agric 33:1280–1290CrossRefGoogle Scholar
  4. Biehl B, Heinrichs H, Ziegler-Berghausen H, Srivastava S, Xiong Q, Passern D, Senyuk VI, Hammoor M (1993) The proteases of ungerminated cocoa seeds and their role in the fermentation process. J Appl Bot 67:59–65Google Scholar
  5. Bown AW, Shelp BJ (1997) The metabolism and functions of γ-aminobutyric acid. Plant Physiol 115:1–5CrossRefGoogle Scholar
  6. Caligiani A, Palla L, Acquotti D, Marseglia A, Palla G (2014) Application of 1HNMR for the characterization of cocoa beans of different geographical origins and fermentation levels. Food Chem 157:94–99CrossRefGoogle Scholar
  7. Caligiani A, Marseglia A, Prandi B, Palla G, Sforza S (2016) Influence of fermentation level and geographical origin on cocoa bean. Food Chem 211:431–439CrossRefGoogle Scholar
  8. da Veiga Moreira IM, Miguel MGDCP, Duarte WF, Dias DR, Schwan RF (2013) Microbial succession and the dynamics of metabolites and sugars during the fermentation of three different cocoa (Theobroma cacao L.) hybrids. Food Res Int 54:9–17CrossRefGoogle Scholar
  9. De Roos J, De Vuyst L (2018) Acetic acid bacteria in fermented foods and beverages. Curr Opin Biotechnol 49:115–119CrossRefGoogle Scholar
  10. Diana M, Quílez J, Rafecas M (2014) Gamma-aminobutyric acid as a bioactive compound in foods: a review. J Funct Foods 10:407–420CrossRefGoogle Scholar
  11. Efombagn MIB, Motamayor JC, Sounigo O, Eskes AB, Nyassé S, Cilas C, Schnell R, Manzanares-Dauleux MJ, Kolesnikova-Allen M (2008) Genetic diversity and structure of farm and genebank accessions of cacao (Theobroma cacao L.) in Cameroon revealed by microsatellite markers. Tree Genet Genome 4:821–831CrossRefGoogle Scholar
  12. Kadow D, Niemenak N, Rohn S, Lieberei R (2015) Fermentation-like incubation of cocoa seeds (Theobroma cacao L.). Reconstruction and guidance of the fermentation process. LWT Food Sci Technol 62:357–361CrossRefGoogle Scholar
  13. Kirchhoff PM (1993) Untersuchungen zur Bildung aromawirksamer Aminosäuren und Peptide aus vakualären Proteinen durch proteolyse in Kakaosamen während der Fermentation. Dissertationsschrift, TU-Brauschweig, pp 1–218Google Scholar
  14. Kirchhoff PM, Biehl B, Crone G (1989) Peculiarity of the accumulation of free amino acids during cocoa fermentation. Food Chem 31:295–311CrossRefGoogle Scholar
  15. Lamberts L, Joye IJ, Beliën T, Delcour JA (2012) Dynamics of γ-aminobutyric acid in wheat flour bread making. Food Chem 130:896–901CrossRefGoogle Scholar
  16. Lieberei R, Rohsius C (2003) Cocoa atlas 2002 (deutsch: Cacao Atlas 2002). Stiftung der deutschen Kakao- und Schokoladen-Wirtschaft (ed), 1st edn. dresenfunkepr/kommunikationproduction GmbH, Leverkusen CD-Rom 3-9808866-0-3Google Scholar
  17. Lieberei R, Kadow D, Zeigler D (2013) Cocoa cultivation, directed breeding and polyphenolics. In: Ramawat KG, Merillon JM (eds) Natural products. Springer, Berlin, pp 1599–1616.  https://doi.org/10.1007/978-3-642-22144-6_51 CrossRefGoogle Scholar
  18. Lopez A, Lehrian DW, Lehrian LV (1978) Optimum temperature and pH of invertase of the seeds of Theobroma cacao L. Rev Theobroma (Brazil) 8:105–112Google Scholar
  19. Niemenak N, Rohsius C, Elwers S, Omokolo Ndoumou D, Lieberei R (2006) Comparative study of different cocoa (Theobroma cacao L.) clones in terms of their phenolics and anthocyanins contents. J Food Compos Anal 19:612–619CrossRefGoogle Scholar
  20. Parmar N, Singh N, Kaur A, Thakur S (2017) Comparison of color, anti-nutritional factors, minerals, phenolic profile and protein digestibility between hard-to-cook and easy-to-cook grains from different kidney bean (Phaseolus vulgaris) accessions. J Food Sci Technol 54(4):1023–1034CrossRefGoogle Scholar
  21. Rawel HM, Huschek G, Sagu ST, Homann T (2019) Cocoa bean proteins—characterization, changes and modifications due to ripening and post-harvest processing. Nutrients 11:428.  https://doi.org/10.3390/nu11020428 CrossRefGoogle Scholar
  22. Rohsius C (2007) Die Heterogenität der biologischen Ressource Rohkakao (Theobroma cacao L.). PhD thesis, University of Hamburg, GermanyGoogle Scholar
  23. Rohsius C, Matissek R, Lieberei R (2006) Free amino acid amounts in raw cocoas from different origins. Eur Food Res Technol 222:432–438CrossRefGoogle Scholar
  24. Romanens E, Näf R, Lobmaier T, Pedan V, Leischtfeld SF, Meile L, Schwenninger SM (2018) A lab-scale model system for cocoa bean fermentation. Appl Microbiol Biotechnol 102:3349–3362CrossRefGoogle Scholar
  25. Saltini R, Akkerman R, Frosch S (2013) Optimizing chocolate production through traceability: a review of the influence of farming practices on cocoa bean quality. Food Control 29:167–187CrossRefGoogle Scholar
  26. Singh N, Kaur A, Shevkani K (2014) Maize: grain structure, composition, milling, and starch characteristics. In: Chaudhry DP (ed) Maize: nutrition dynamics and novel uses India. Springer, New Delhi, pp 65–76CrossRefGoogle Scholar
  27. Stoll L, Niemenak N, Bisping B, Lieberei R (2017) German cacao of Cameroon—new facts on a traditional variety fallen into oblivion. J Appl Bot Food Qual 90:274–279Google Scholar
  28. Totlani VM, Peterson DG (2005) Reactivity of epicatechin in aqueous glycine and glucose Maillard reaction models: quenching of C2, C3, and C4 sugar fragments. J Agric Food Chem 53:4130–4135CrossRefGoogle Scholar
  29. Trehan S, Singh N, Kaur A (2018) Characteristics of white, yellow, purple corn accessions: phenolic profile, textural, rheological properties and muffin making potential. J Food Sci Technol 55(6):2334–2343CrossRefGoogle Scholar
  30. Voigt J, Heinrichs H, Wrann D, Biehl B (1994) In vitro studies on the proteolytic formation of the characteristic aroma precursors of fermented cocoa seeds: the significance of endoprotease specificity. Food Chem 51:7–14CrossRefGoogle Scholar
  31. Wollgast J, Anklam E (2000) Review on polyphenols in Theobroma cacao: changes in composition during the manufacture of chocolate and methodology for identification and quantification. Food Res Int 33:423–447CrossRefGoogle Scholar

Copyright information

© Association of Food Scientists & Technologists (India) 2019

Authors and Affiliations

  • Germaine Audrey Ngouambe Tchouatcheu
    • 1
  • Alexandre Mboene Noah
    • 2
  • Reinhard Lieberei
    • 3
  • Nicolas Niemenak
    • 1
    Email author
  1. 1.Department of Biological Science, Higher Teacher Training CollegeUniversity of Yaounde IYaoundeCameroon
  2. 2.Faculty of Science, Department of BiochemistryUniversity of DoualaDoualaCameroon
  3. 3.Department of Biology, Biocenter Klein Flottbek and Botanical GardenUniversity of HamburgHamburgGermany

Personalised recommendations