Journal of Food Science and Technology

, Volume 56, Issue 7, pp 3177–3184 | Cite as

Chemical characterization, antioxidant and antimutagenic evaluations of pigmented corn

  • Guadalupe Loarca-Piña
  • Manuel Neri
  • Juan de Dios Figueroa
  • Eduardo Castaño-Tostado
  • Minerva Ramos-Gómez
  • Rosalia Reynoso
  • Sandra MendozaEmail author
Original Article


In order to identify pigmented corn with nutraceutical potential, the secondary metabolite content, the antioxidant capacity and antimutagenic activity of red, and blue corn were analyzed. The ranges of total phenolic, flavonoid and anthocyanin contents of the corn samples were from 69.4 to 212.8 mg gallic ac. equiv./100 g DW, 0.07 to 12.19 mg (+) catechin eq./100 g DW and 3.89 to 34.17 mg cyanidin-3-O-glucoside eq./100 g DW, respectively. The phenolic extracts demonstrated the highest antioxidant capacity evaluated by the ABTS assay displaying values from 2.06 to 7.34 mmol Trolox/100 g DW. None of the extracts was toxic to the tested bacteria strains TA98 and TA100. For TA98 tester strain, percentage inhibition values against AFB1 mutagenicity from 61 to 93, and 38 to 75 for flavonoid and anthocyanin extracts were obtained. The total phenol and anthocyanin contents correlate with the observed antioxidant capacity. The most biological active corn samples were the blue color while the least actives were the red ones. The results show that the studied blue corn samples are good sources of antioxidant and antimutagenic compounds, which could use to develop products that contribute to human health.


Antioxidant Antimutagenic Phenolics Pigmented corn 



This work was supported by the Mexican Council for Science and Technology (CONACyT), projects GTO-04-C02-68 and P50596-Q. The authors thank CONACyT for a graduate fellowship to M. Neri.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abdel-Aal ESM, Young JC, Rebalski I (2006) Anthocyanin composition in black, blue, pink, purple, and red cereal grains. J Agric Food Chem 54:4696–4704CrossRefGoogle Scholar
  2. Borges E, Ataide JP, Marinho TC, Couto M, Castro MM (2010) Multivariate QSAR study on the antimutagenic activity of flavonoids against 3-NFA on Salmonella typhimurium TA98. Eur J Med Chem 45:4562–4569CrossRefGoogle Scholar
  3. De la Parra C, Serna Saldivar SO, Hai Liu R (2007) Effect of processing on the phytochemical profiles and antioxidant activity of corn for production of masa, tortillas, and tortilla chips. J Agric Food Chem 55:4177–4183CrossRefGoogle Scholar
  4. Del Pozo-Insfran D, Brenes CH, Serna Saldivar SO, Talcott ST (2006) Polyphenolic and antioxidant content of white and blue corn (Zea mays L.) products. Food Res Int 39:696–703CrossRefGoogle Scholar
  5. Dewanto V, Wu X, Adom KK, Liu RH (2002) Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem 50:3010–3014CrossRefGoogle Scholar
  6. Edenharder R, Tang X (1997) Inhibition on the mutagenicity of 2-nitrofluorene, 3-nitrofluoranthene and 1-notropyrene by flavonoids, coumarins, quinones and other phenolic compounds. Food Chem Toxicol 35:357–372CrossRefGoogle Scholar
  7. Firuzi O, Lacanna A, Petrucci R, Marrosu G, Saso L (2005) Evaluation of the antioxidant activity of flavonoids by “ferric reducing antioxidant power” assay and cyclic voltammetry. Biochim Biophys 1721:174–184CrossRefGoogle Scholar
  8. Ghosh D, Konishi T (2007) Anthocyanins and anthocyanin-rich extracts: role in diabetes and eye function. Asia Pac J Clin Nutr 16:200–208Google Scholar
  9. Hagiwara A, Miyashita K, Nakanishi T, Sano M, Tamano S, Kadota T, Koda T, Nakamura M, Imaida K, Ito N, Shirai T (2001) Pronounced inhibition by a natural anthocyanin, purple corn color, of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-associated colorectal carcinogenesis in male F344 rats pretreated with 1,2-dimethylhydrazine. Cancer Lett 171:17–25CrossRefGoogle Scholar
  10. Kado NY, Langley D, Eisenstadt E (1983) A simple modification of the Salmonella liquid-incubation assay. Increased sensitivity for detecting mutagens in human urine. Mutat Res 121:25–32CrossRefGoogle Scholar
  11. Lopez-Martinez LX, Oliart-Ros RM, Valerio-Alfaro G, Lee CH, Parkin KL, Garcia HS (2009) Antioxidant activity, phenolic compounds and anthocyanins content of eighteen strains of Mexican maize. LWT Food Sci Technol 42:1187–1192CrossRefGoogle Scholar
  12. Mendoza-Díaz S, Ortíz-Valerio Ma C, Castaño-Tostado E, Figueroa-Cárdenas JD, Reynoso-Camacho R, Ramos-Gómez M, Loarca-Piña G (2012) Antioxidant capacity and antimutagenic activity of anthocyanin and carotenoid extracts from nixtamalized pigmented creole maize races (Zea mays L.). Plant Food Hum Nutr 67:442–449CrossRefGoogle Scholar
  13. Mora-Rochín S, Gaxiola-Cuevas N, Gutiérrez-Uribe JA, Milán-Carrillo J, Milán-Noris EM, Reyes-Moreno C, Serna-Saldivar SO, Cuevas-Rodríguez EO (2016) Effect of traditional nixtamalization on anthocyanin content and profile in Mexican blue maize (Zea mays L.) landraces. LWT Food Sci Technol 68:563–569CrossRefGoogle Scholar
  14. Nabae K, Hayashi SM, Kawabe M, Ichihara T, Hagiwara A, Tamano S, Tsushima Y, Uchida K, Koda T, Nakamura M, Ogawa K, Shirai T (2008) A 90-day oral toxicity study of purple corn color, a natural food colorant, in F344 rats. Food Chem Toxicol 46:774–780CrossRefGoogle Scholar
  15. Nenadis N, Wang LF, Tsimidou M, Zhang HY (2004) Estimation of scavenging activity of phenolic compounds using the ABTS•+ assay. J Agric Food Chem 52:4669–4674CrossRefGoogle Scholar
  16. Pedreschi R, Cisneros-Zevallos L (2006) Antimutagenic and antioxidant properties of phenolic fractions from Andean purple corn (Zea mays L.). J Agric Food Chem 54:4557–4567CrossRefGoogle Scholar
  17. Pedreschi R, Cisneros-Zevallos L (2007) Phenolic profiles of Andean purple corn (Zea mays L.). Food Chem 100:956–963CrossRefGoogle Scholar
  18. Reynoso-Camacho R, Guerrero-Villanueva G, Figueroa J, Gallegos-Corona MA, Mendoza S, Loarca-Piña G, Ramos-Gomez M (2015) Anticarcinogenic effect of corn tortilla against 1,2-dimethylhydrazine (DMH)-induced colon carcinogenesis in Sprague Dawley rats. Plant Food Hum Nutr 70:146–152CrossRefGoogle Scholar
  19. Shindo M, Kasai T, Abe A, Kondo Y (2007) Effects of dietary administration of plant-derived anthocyanin-rich colors to spontaneously hypertensive rats. J Nutr Sci Vitaminol 53:90–93CrossRefGoogle Scholar
  20. Sun J, Chu YF, Wu XZ, Liu RH (2002) Antioxidant and antiproliferative activities of vegetables. J Agric Food Chem 50:6910–6916CrossRefGoogle Scholar
  21. Trehan S, Singh N, Kaur A (2018) Characteristics of white, yellow, purple corn accessions: phenolic profile, textural, rheological properties and muffin making potential. J Food Sci Technol 55:2334–2343CrossRefGoogle Scholar
  22. Tsuda T (2008) Regulation of adipocyte function by anthocyanins; possibility of preventing the metabolic syndrome. J Agric Food Chem 56:642–646CrossRefGoogle Scholar
  23. Urias-Peraldí M, Gutiérrez-Uribe JA, Preciado-Ortiz RE, Cruz-Morales AS, Serna-Saldívar SO, García-Lara S (2013) Nutraceutical profiles of improved blue maize (Zea mays) hybrids for subtropical regions. Field Crops Res 141:69–76CrossRefGoogle Scholar
  24. Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemometr Intell Lab Syst 58:109–130CrossRefGoogle Scholar
  25. Yang Z, Zhai W (2010) Identification and antioxidant activity of anthocyanins extracted from the seed and cob of purple corn (Zea mays L.). Innov Food Sci Emerg Technol 11:169–176CrossRefGoogle Scholar

Copyright information

© Association of Food Scientists & Technologists (India) 2019

Authors and Affiliations

  1. 1.Programa de Posgrado en Alimentos del Centro de la Republica (PROPAC), Research and Graduate Studies in Food Science, Chemistry SchoolUniversidad Autónoma de QuerétaroQuerétaroMexico
  2. 2.Departamento de Materiales Bio-orgánicosCentro de Investigación y Estudios Avanzados del Instituto Politécnico NacionalQuerétaroMexico

Personalised recommendations