Journal of Food Science and Technology

, Volume 56, Issue 2, pp 896–904 | Cite as

Characterization of a soy protein hydrolyzate for the development of a functional ingredient

  • Juan P. ContiEmail author
  • Gabriel Vinderola
  • Eduardo N. Esteban
Original Article


Argentina is a leading country in biodiesel production from soy. Extruded soy is a low-cost byproduct of the soybean oil industry, from which animal feeds are prepared as well as flour for human consumption. Soy proteins can be isolated from flours and digested with enzymes in order to obtain bioactive fractions. In this work, a commercial soy isolate (PRO-FAM 974) was characterized. Maximal solubility was achieved at a concentration of 90 mg/mL. Protein profiles obtained by SDS-PAGE showed that the isolate was constituted mostly by globulins. Conformational and thermal analyses (differential scanning calorimetry) showed that proteins were almost completely denatured. The isolate was hydrolyzed with a commercially available enzyme (COROLASE 7089). The peptide profile (MALDI-TOF) showed peptides ranging from 800 to 10,000 Daltons. We conclude that the product obtained has the potential to be used as functional ingredient for the development of functional foodstuffs, giving the opportunity to add value to the byproducts of the soybean oil industry.


Protein isolates Soy peptides Hydrolysates Functional foods Enzymes 



The authors thank Dr. María Cristina Añón, Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, UNLP-CONICET) for collaborating with the thermal and conformational studies of the protein isolate, Dr. Silvia Moreno, Centro de Estudios Químicos y Biológicos por Espectrometría de Masa (CEQUIBIEM) for collaborating with the mass spectrometry studies. Dr. Sandra Elizabeth Perez and Daniel Starck, Centro de Investigación Veterinaria de Tandil (CIVETAN) for collaborating with the language review.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest in this work.


  1. Ahmadifard N, Murueta JHC, Abedian-Kenari A (2016) Comparison the effect of three commercial enzymes for enzymatic hydrolysis of two substrates (rice bran protein concentrate and soy-been protein) with SDS-PAGE. J Food Sci Technol 53:1279. CrossRefGoogle Scholar
  2. Barac MB, Pesic MB, Stanojevic SP (2015) Comparative study of the functional properties of three legume seed isolates: adzuki, pea and soy vean. J Food Sci Technol 52:2779. CrossRefGoogle Scholar
  3. Blinkovsky AM, Khmelnitsky YL, Dordick JS (1994) Organosoluble enzyme-polymer complexes: a novel type of biocatalyst for nonaqueous media. Biotechnol Technol 8:33. CrossRefGoogle Scholar
  4. Chen N, Zhao M, Chassenieux C, Nicolai T (2016) Data on the characterization of native soy globulin by SDS-Page, light scattering and titration. Data Brief 9:749–752. CrossRefGoogle Scholar
  5. Chiang WD, Shih CJ, Chu YH (1999) Functional properties of soy protein hydrolysate produced from a continuous membrane reactor system. Food Chem 65:189–194CrossRefGoogle Scholar
  6. Cho SJ, Marcel AJ, Lee HC (2007) Cholesterol lowering mechanism of soybean protein hydrolysate. J Agric Food Chem 55(26):10599–10604CrossRefGoogle Scholar
  7. Coligan JE, Dunn BM, Ploegh HL (1995) Matrix-assisted laser desorption/ionization time-of-flight mass analysis of peptides. In: Speicher DW, Wingfield PT (eds) (Contributed by William J. Henzel and John T. Stults), current protocols in protein science, Volume 1. Wiley, New York, Unit 16.2Google Scholar
  8. Doi HR (1991) Proteolytic activities in bacillus. Curr Opin Biotechnol 2:682–684CrossRefGoogle Scholar
  9. Etzel MR (2004) Manufacture and use of dairy protein fractions. J Nutrit 134(4):996S–1002SGoogle Scholar
  10. Fitzgerald RJ, Meisel H (2003) Milk protein hydrolysates and bioactive peptides. In: Fox PF, McSweeney PLH (eds) Advanced dairy chemistry, Volume 1, 3rd Edition, Part B, pp 675–698. Kluwer/Plenum, New York/Dordrecht, pp 675–698Google Scholar
  11. Ghumman A, Kaur A, Singh N (2016) Functionality and digestibility of albumins and globulins from lentil and horse gram and their effect on starch rheology. Food Hydrocoll. Google Scholar
  12. Henry RJ, Cannon DC, Winkelma JW (1974) Clinical chemistry, principles and techniques, 2nd edn. Harper and Row, Hagerstown, pp 1354–1369Google Scholar
  13. Horwitz W (2000) Official methods of analysis of AOAC International, vols 1 and 2, 17th edn. AOAC International, GaithersburgGoogle Scholar
  14. Kim SE, Kim HH, Kim JY, Kang YI, Wo HJ, Lee HJ (2000) Anticancer activity of hydrophobic peptides from soy proteins. BioFactors 12(1–4):151–155CrossRefGoogle Scholar
  15. Kitts DD, Weiler K (2003) Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr Pharm Des 9(16):1309–1323CrossRefGoogle Scholar
  16. Kong XZ, Guo MM, Hua Y, Dong C, Zhang C (2008) Enzymatic preparation of 610 immunomodulating hydrolysates from soy proteins. Bioresour Technol 611(99):8873–8879CrossRefGoogle Scholar
  17. Korhonen H, Pihlanto A (2003) Bioactive peptides: new challenges and opportunities for the dairy andustry. Int Dairy J 16(2006):945–960. Google Scholar
  18. Kuo LC, Cheng WY, Wu RY, Huang CJ, Lee KT (2006) Hydrolysis of black soybean isoflavone glycoside by Bacillus subtilis natto. Appl Microbiol Biotechnol 73(2):314–320CrossRefGoogle Scholar
  19. Laemmli UK (1970) Cleave of structural proteins during the assembly of the head of bacteria pHage T4. Nature 227:680–685CrossRefGoogle Scholar
  20. Lee KH, Ryu HS, Rhee KC (2003) Protein Solubility Characteristics of Commercial Soy Protein Products. J Amer Oil Chem Soc 80:85. CrossRefGoogle Scholar
  21. Madureira AC, Pereira A, Gómes M, Pintado MalcataF (2007) Bovine whey proteins—overview on their main biological properties. Food Res Int 40:1197–1211CrossRefGoogle Scholar
  22. Nagpal R, Kumar A, Kumar M, Behare PV, Jain S, Yadav H (2012) Probiotics, their health benefits and applications for developing healthier foods: a review. FEMS Microbiol Lett 334:1–15. CrossRefGoogle Scholar
  23. Paredes LO, Ordorica FC (1986) Production of safflower protein isolates: composition, yield and protein quality. J Sci Food Agric 37:1097–1103CrossRefGoogle Scholar
  24. Peñas E, Prestarno G, Baeza M, Martinez M, Gomez R (2006) Effect of combined high pressure and enzimatic treatments on the hidrolysis and inmunoreactivity of dairy whey prot. Int Dairy J 16:831–839CrossRefGoogle Scholar
  25. Petruccelli S, Añon MC (1995) Thermal aggregation of soy protein isolates. J Agric Food Chem 43:3035–3041CrossRefGoogle Scholar
  26. Pihlanto A (2001) Bioactive peptides derived from bovine whey proteins: opioid and ACE-inhibitorypeptides. Trends Food Sci Technol 11:347–536CrossRefGoogle Scholar
  27. Sanz Pérez B (2005) El variado mundo de los alimentos funcionales nutracéuticos y suplementos dietéticos. Cascales Angosto M, Espinos Pérez D, García Barreno P (eds) En Bioquímica y fisiopatología de la nutrición. Instituto de España. Madrid, pp 133–208Google Scholar
  28. Secretaria de Agricultura, Ganadería, Pesca y alimentación (2016).
  29. Shevkani K, Singh N, Kaur A, Rana JC (2014) Structural and functional characterization of kidney bean and field pea protein isolates: a comparative study. Food Hydrocoll 43(2015):679–689. Google Scholar
  30. Singh BP, Vij S, Hati S (2014) Functional significance of bioactive peptides derived from soybean. Peptides. Google Scholar
  31. Smith KE, Bradley RL (1987) Activity of four anzyme-based cleaners for ultrafiltrations systems against proteins in skim milk and whey. J Dairy Sac 70:243CrossRefGoogle Scholar
  32. Takahiro T, Katsuki K, Masakazu T, Makoto T, Taiji M, Masaaki Y (2003) Soymetide, an immunostimulating peptide derived from soybean β-conglycinin, is an fMLP agonist. FEBS Lett 540(1–3):206–210Google Scholar
  33. Takahiro T, Kyoya T, Masaaki Y (2005) Anti-alopecia mechanisms of soymetide-4, an immunostimulating peptide derived from soy β-conglycinin. Peptides 26(5):707–711. CrossRefGoogle Scholar
  34. Vinderola CG, de Moreno de LeBlanc A, Perdigón G, Matar C (2008) Biologically active peptides released in fermented milk: role and functions. In: Farnworth ER (ed) Handbook of fermented functional foods 2nd edition, Chapter 7. CRC Press, Taylor & Francis Group, Boca Raton, pp 209–242. ISBN: 9781420053265Google Scholar
  35. Vioque J, Clemente A, Pedroche J, Yust MM, Millán F (2001) Obtention and uses of protein hydrolysates. Grasas y Aceites, ISSN 1988-4214.

Copyright information

© Association of Food Scientists & Technologists (India) 2019

Authors and Affiliations

  1. 1.Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-CICPBA), Facultad de Cs. VeterinariasUNCPBATandilArgentina
  2. 2.Instituto de Lactología Industrial (INLAIN, UNL-CONICET), Facultad de Ingeniería QuímicaUniversidad Nacional del LitoralSanta FeArgentina
  3. 3.Eduardo N. Esteban, BIOALPINA Program (GENIAL/COTANA)Colonia AlpinaArgentina

Personalised recommendations