Production, pomological and nutraceutical properties of apricot

  • Khaled MoustafaEmail author
  • Joanna Cross
Review Article


Apricot (Prunus sp.) is an important fruit crop worldwide. Despite recent advances in apricot research, much is still to be done to improve its productivity and environmental adaptability. The availability of wild apricot germplasms with economically interesting traits is a strong incentive to increase research panels toward improving its economic, environmental and nutritional characteristics. New technologies and genomic studies have generated a large amount of raw data that the mining and exploitation can help decrypt the biology of apricot and enhance its agronomic values. Here, we outline recent findings in relation to apricot production, pomological and nutraceutical properties. In particular, we retrace its origin from central Asia and the path it took to attain Europe and other production areas around the Mediterranean basin while locating it in the rosaceae family and referring to its genetic diversities and new attempts of classification. The production, nutritional, and nutraceutical importance of apricot are recapped in an easy readable and comparable way. We also highlight and discuss the effects of late frost damages on apricot production over different growth stages, from swollen buds to green fruits formation. Issues related to the length of production season and biotic and abiotic environmental challenges are also discussed with future perspective on how to lengthen the production season without compromising the fruit quality and productivity.


Apricot kernel oil Plum pox virus Prunus armeniaca Spring frost Stone fruit Sharka 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Akil M, Kaya A, Ustyol L, Aktar F, Akbayram S (2013) Acute cyanide intoxication due to apricot seed ingestion. J Emerg Med 44(2):e285–e286CrossRefGoogle Scholar
  2. Akin EB, Karabulut I, Topcu A (2008) Some compositional properties of main Malatya apricot (Prunus armeniaca L.) varieties. Food Chem 107(2):939–948CrossRefGoogle Scholar
  3. Akpınar A, Koçal H, Ergül A, Kazan K, Şelli M, Bakır M, Aslantaş Ş, Kaymak S, Sarıbaş R (2010) SSR-based molecular analysis of economically important Turkish apricot cultivars. Genet Mol Res 9(1):324–332CrossRefGoogle Scholar
  4. Al Juhaimi F, Ghafoor K, Özcan MM, Jahurul MHA, Babiker EE, Jinap S, Sahena F, Sharifudin MS, Zaidul ISMJ (2018a) Effect of various food processing and handling methods on preservation of natural antioxidants in fruits and vegetables. J Food Sci Technol 8:9–10. CrossRefGoogle Scholar
  5. Al Juhaimi F, Ozcan MM, Ghafoor K, Babiker EE, Hussain S (2018b) Comparison of cold-pressing and soxhlet extraction systems for bioactive compounds, antioxidant properties, polyphenols, fatty acids and tocopherols in eight nut oils. J Food Sci Technol 55(8):3163–3173CrossRefGoogle Scholar
  6. Alburquerque N, Burgos L, Egea J (2004) Influence of flower bud density, flower bud drop and fruit set on apricot productivity. Sci Hortic 102(4):397–406CrossRefGoogle Scholar
  7. Alburquerque N, Faize L, Burgos L (2017) Silencing of Agrobacterium tumefaciens oncogenes ipt and iaaM induces resistance to crown gall disease in plum but not in apricot. Pest Manag Sci 73(10):2163–2173CrossRefGoogle Scholar
  8. Angmo P, Angmo S, Upadhyay SS, Targais K, Kumar B, Stobdan T (2017) Apricots (Prunus armeniaca L.) of trans-Himalayan Ladakh: potential candidate for fruit quality breeding programs. Sci Hortic 218:187–192CrossRefGoogle Scholar
  9. Asma BM (2007) Malatya: world’s capital of apricot culture. Chron Hortic 47:20–24Google Scholar
  10. Bae H, Yun SK, Yoon IK, Nam EY, Kwon JH, Jun JH (2014) Assessment of organic acid and sugar composition in apricot, plumcot, plum, and peach during fruit development. J Appl Bot Food Qual 87:24–29Google Scholar
  11. Baldicchi A, Farinelli D, Micheli M, Di Vaio C, Moscatello S, Battistelli A, Walker RP, Famiani F (2015) Analysis of seed growth, fruit growth and composition and phospoenolpyruvate carboxykinase (PEPCK) occurrence in apricot (Prunus armeniaca L.). Sci Hortic 186:38–46CrossRefGoogle Scholar
  12. Bourguiba H, Khadari B, Krichen L, Trifi-Farah N, Santoni S, Audergon J-M (2010) Grafting versus seed propagated apricot populations: two main gene pools in Tunisia evidenced by SSR markers and model-based Bayesian clustering. Genetica 138(9–10):1023–1032CrossRefGoogle Scholar
  13. Bourguiba H, Audergon J-M, Krichen L, Trifi-Farah N, Mamouni A, Trabelsi S, D’Onofrio C, Asma BM, Santoni S, Khadari B (2012) Loss of genetic diversity as a signature of apricot domestication and diffusion into the Mediterranean Basin. BMC Plant Biol 12(1):1CrossRefGoogle Scholar
  14. Bourguiba H, Khadari B, Krichen L, Trifi-Farah N, Mamouni A, Trabelsi S, Audergon J-M (2013) Genetic relationships between local North African apricot (Prunus armeniaca L.) germplasm and recently introduced varieties. Sci Hortic 152:61–69CrossRefGoogle Scholar
  15. Çağlayan K, Asma B, Badenes M, Ulubaş Serçe C, Gazel M (2013) Screening for resistance to plum pox virus in some local turkish apricot cultivars and their crosses by molecular markers. In: II International symposium on plum pox virus 1063Google Scholar
  16. Cambra M, Capote N, Myrta A, Llácer G (2006) Plum pox virus and the estimated costs associated with sharka disease. EPPO Bull 36(2):202–204CrossRefGoogle Scholar
  17. Campoy J, Ruiz D, Nortes M, Egea J (2013) Temperature efficiency for dormancy release in apricot varies when applied at different amounts of chill accumulation. Plant Biol 15(s1):28–35CrossRefGoogle Scholar
  18. Costa G, Vizzotto G (2010) Flower and fruit thinning of peach and other Prunus. Hortic Rev 28:351Google Scholar
  19. Cross JM (2015) Gene comparison between arabidopsis thaliana, prunus mume and prunus persica. Res J Biol Sci 10(4–5):44–55Google Scholar
  20. Drogoudi PD, Vemmos S, Pantelidis G, Petri E, Tzoutzoukou C, Karayiannis I (2008) Physical characters and antioxidant, sugar, and mineral nutrient contents in fruit from 29 apricot (Prunus armeniaca L.) cultivars and hybrids. J Agric Food Chem 56(22):10754–10760CrossRefGoogle Scholar
  21. Durmaz G, Cam M, Kutlu T, HIşIL Y (2010) Some physical and chemical changes during fruit development of five common apricot (Prunus armeniaca L.) cultivars. Food Sci Technol Res 16(1):71–78CrossRefGoogle Scholar
  22. Escalettes VS-L, Hullot C, Wawrzy’nczak D, Mathieu E, Eyquard J-P, Le Gall O, Decroocq V (2006) Plum pox virus induces differential gene expression in the partially resistant stone fruit tree Prunus armeniaca cv. Goldrich. Gene 374:96–103CrossRefGoogle Scholar
  23. Faust M, Suranyi D, Nyujto F (1998) Origin and dissemination of apricot. Hortic Rev Westport N Y 22:225–260Google Scholar
  24. Fideghelli C, Della Strada G (2010) The breeding activity on apricot in the world from 1980 through today. Acta Hort 862:93–98CrossRefGoogle Scholar
  25. García-Almodóvar R, Clemente-Moreno M, Díaz-Vivancos P, Petri C, Rubio M, Padilla I, Ilardi V, Burgos L (2015) Greenhouse evaluation confirms in vitro sharka resistance of genetically engineered h-UTR/P1 plum plants. Plant Cell Tissue Org Cult 120(2):791–796CrossRefGoogle Scholar
  26. Ghrab M, Mimoun MB, Masmoudi MM, Mechlia NB (2014) Chilling trends in a warm production area and their impact on flowering and fruiting of peach trees. Sci Hortic 178:87–94CrossRefGoogle Scholar
  27. Goliáš J, Létal J, Dokoupil L, Krška B (2013) Physico-chemical changes and volatile constituents observed in 10 apricot cultivars (Prunus armeniaca L.) during post-harvest ripening. Hortic Sci 40(3):102–110CrossRefGoogle Scholar
  28. Guillot S, Peytavi L, Bureau S, Boulanger R, Lepoutre J-P, Crouzet J, Schorr-Galindo S (2006) Aroma characterization of various apricot varieties using headspace–solid phase microextraction combined with gas chromatography–mass spectrometry and gas chromatography–olfactometry. Food Chem 96(1):147–155CrossRefGoogle Scholar
  29. Guo Y, Li J (2002) Changes of fatty acid composition of membrane lipid, ethylene release and lipoxygenase activity in leaves of apricot under drought stress. J Zhejiang Univ (Agriculture and Life Sciences) 28(5):513–517Google Scholar
  30. Hagen L, Khadari B, Lambert P, Audergon J-M (2002) Genetic diversity in apricot revealed by AFLP markers: species and cultivar comparisons. Theor Appl Genet 105(2–3):298–305PubMedGoogle Scholar
  31. Hummer KE, Janick J (2009) Rosaceae: taxonomy, economic importance, genomics. In: Folta KM, Gardiner SE (eds) Genetics and genomics of rosaceae. Plant genetics and genomics: crops and models, vol 6. Springer, New York, NYGoogle Scholar
  32. Ilardi V, Tavazza M (2015) Biotechnological strategies and tools for Plum pox virus resistance: trans-, intra-, cis-genesis, and beyond. Front Plant Sci 6:379CrossRefGoogle Scholar
  33. İspir A, Toğrul İT (2009) Osmotic dehydration of apricot: kinetics and the effect of process parameters. Chem Eng Res Des 87(2):166–180CrossRefGoogle Scholar
  34. Janick J, Moore JN (1996) Fruit breeding, tree and tropical fruits. Wiley, New YorkGoogle Scholar
  35. Karabulut AB, Karadag N, Gurocak S, Kiran T, Tuzcu M, Sahin K (2014) Apricot attenuates oxidative stress and modulates of Bax, Bcl-2, caspases, NFκ-B, AP-1, CREB expression of rats bearing DMBA-induced liver damage and treated with a combination of radiotherapy. Food Chem Toxicol 70:128–133CrossRefGoogle Scholar
  36. Kumar M, Mishra GP, Singh R, Kumar J, Naik PK, Singh SB (2009) Correspondence of ISSR and RAPD markers for comparative analysis of genetic diversity among different apricot genotypes from cold arid deserts of trans-Himalayas. Physiol Mol Biol Plants 15(3):225–236CrossRefGoogle Scholar
  37. Kurus M, Ugras M, Ates B, Otlu A (2009) Apricot ameliorates alcohol induced testicular damage in rat model. Food Chem Toxicol 47(10):2666–2672CrossRefGoogle Scholar
  38. Levy L, Damsteegt V, Scorza R, Kolber M (2000) Plum pox potyvirus disease of stone fruits. American Phytopathological Society.
  39. Li M, Zhao Z, Miao XJ (2013) Genetic variability of wild apricot (Prunus armeniaca L.) populations in the Ili Valley as revealed by ISSR markers. Genet Resour Crop Evol 60(8):2293–2302CrossRefGoogle Scholar
  40. Minaiyan M, Ghannadi A, Asadi M, Etemad M, Mahzouni P (2014) Anti-inflammatory effect of Prunus armeniaca L. (Apricot) extracts ameliorates TNBS-induced ulcerative colitis in rats. Res Pharm Sci 9(4):225–231PubMedPubMedCentralGoogle Scholar
  41. Olmstead JW, Iezzoni AF, Whiting MD (2007) Genotypic differences in sweet cherry fruit size are primarily a function of cell number. J Am Soc Hortic Sci 132(5):697–703Google Scholar
  42. Pedryc A, Ruthner S, Hermán R, Krska B, Hegedűs A, Halász J (2009) Genetic diversity of apricot revealed by a set of SSR markers from linkage group G1. Sci Hortic 121(1):19–26CrossRefGoogle Scholar
  43. Pérez-Pastor A, Ruiz-Sánchez MC, Martínez JA, Nortes PA, Artés F, Domingo R (2007) Effect of deficit irrigation on apricot fruit quality at harvest and during storage. J Sci Food Agric 87(13):2409–2415CrossRefGoogle Scholar
  44. Pérez-Pastor A, Domingo R, Torrecillas A, Ruiz-Sánchez MC (2009) Response of apricot trees to deficit irrigation strategies. Irrig Sci 27(3):231–242CrossRefGoogle Scholar
  45. Petri C, Alburquerque A, Garcéa-Castillo S, Egea J, Burgos L (2004) Factors affecting gene transfer efficiency to apricot leaves during early agrobacterium-mediated transformation steps. J Hortic Sci Biotechnol 79(5):704–712CrossRefGoogle Scholar
  46. Petri C, Wang H, Alburquerque N, Faize M, Burgos L (2008) Agrobacterium-mediated transformation of apricot (Prunus armeniaca L.) leaf explants. Plant Cell Rep 27(8):1317–1324CrossRefGoogle Scholar
  47. Potter D, Eriksson T, Evans RC, Oh S, Smedmark J, Morgan DR, Kerr M, Robertson KR, Arsenault M, Dickinson TA (2007) Phylogeny and classification of Rosaceae. Plant Syst Evol 266(1–2):5–43CrossRefGoogle Scholar
  48. Raj D, Sharma PC, Sharera SK (2015) Studies on Osmo-air dehydration of different Indian apricot (Prunus armeniaca L.) cultivars. J Food Sci Technol 52(6):3794–3802PubMedGoogle Scholar
  49. Ravelonandro M, Scorza R, Michel HJ, Briard P (2014) The efficiency of RNA interference for conferring stable resistance to Plum pox virus. Plant Cell Tissue Org Cult 118(2):347–356CrossRefGoogle Scholar
  50. Riva M, Campolongo S, Leva AA, Maestrelli A, Torreggiani D (2005) Structure–property relationships in osmo-air-dehydrated apricot cubes. Food Res Int 38(5):533–542CrossRefGoogle Scholar
  51. Rubio M, Ruiz D, Egea J, Martínez-Gómez P, Dicenta F (2014) Opportunities of marker-assisted selection for Plum pox virus resistance in apricot breeding programs. Tree Genet Genom 10(3):513–525CrossRefGoogle Scholar
  52. Ruiz D, Egea J (2008) Analysis of the variability and correlations of floral biology factors affecting fruit set in apricot in a Mediterranean climate. Sci Hortic 115(2):154–163CrossRefGoogle Scholar
  53. Ruiz D, Egea J, Gil MI, Tomás-Barberán FA (2005a) Characterization and quantitation of phenolic compounds in new apricot (Prunus armeniaca L.) varieties. J Agric Food Chem 53(24):9544–9552CrossRefGoogle Scholar
  54. Ruiz D, Egea J, Tomás-Barberán FA, Gil MI (2005b) Carotenoids from new apricot (Prunus armeniaca L.) varieties and their relationship with flesh and skin color. J Agric Food Chem 53(16):6368–6374CrossRefGoogle Scholar
  55. Ruiz D, Campoy JA, Egea J (2007) Chilling and heat requirements of apricot cultivars for flowering. Environ Exp Bot 61(3):254–263CrossRefGoogle Scholar
  56. Ruiz-Sanchez MC, Domingo R, Torrecillas A, Perez-Pastor A (2000) Water stress preconditioning to improve drought resistance in young apricot plants. Plant Sci 156(2):245–251CrossRefGoogle Scholar
  57. Ruiz-Sánchez MC, Domingo R, Pérez-Pastor A (2007) Daily variations in water relations of apricot trees under different irrigation regimes. Biol Plant 51(4):735–740CrossRefGoogle Scholar
  58. Scorzal R, May LG, Purnell B, Upchurch B (1991) Differences in number and area of mesocarp cells between small-and large-fruited peach cultivars. J Am Soc Hortic Sci 116(5):861–864Google Scholar
  59. Senthilkumaran S, Menezes RG, Jayaraman S, Thirumalaikolundusubramanian P (2015) Acute cyanide intoxication due to apricot seeds: Is “evidence” countable? J Emerg Med 48(1):82–83CrossRefGoogle Scholar
  60. Sharma PC, Tilakratne BM, Gupta A (2010) Utilization of wild apricot kernel press cake for extraction of protein isolate. J Food Sci Technol 47(6):682–685CrossRefGoogle Scholar
  61. Shi S, Li J, Sun J, Yu J, Zhou S (2013) Phylogeny and classification of Prunus sensu lato (Rosaceae). J Integr Plant Biol 55(11):1069–1079CrossRefGoogle Scholar
  62. Shin H, Oh Y, Kim D (2015) Differences in cold hardiness, carbohydrates, dehydrins and related gene expressions under an experimental deacclimation and reacclimation in Prunus persica. Physiol Plant 154(4):485–499CrossRefGoogle Scholar
  63. Somogyi L, Barrett DM, Hui YH (1996) Processing fruits. CRC Press, Boca RatonGoogle Scholar
  64. Stushnoff C, Remmele RL, Essensee V, McNeil M (1993) Low temperature induced biochemical mechanisms: implications for cold acclimation and de-acclimation. In: Jackson MB, Black CR (eds) Interacting stresses on plants in a changing climate. Springer, Berlin, pp 647–657CrossRefGoogle Scholar
  65. Szymajda M, Pruski K, Żurawicz E, Sitarek M (2013) Freezing injuries to flower buds and their influence on yield of apricot (Prunus armeniaca L.) and peach (Prunus persica L.). Can J Plant Sci 93(2):191–198CrossRefGoogle Scholar
  66. Tian H, Yan H, Tan S, Zhan P, Mao X, Wang P, Wang Z (2016) Apricot kernel oil ameliorates cyclophosphamide-associated immunosuppression in rats. Lipids 51(8):931–939CrossRefGoogle Scholar
  67. Vavilov NI (1951) The origin, variation, immunity and breeding of cultivated plants. Soil Sci 72(6):482CrossRefGoogle Scholar
  68. Wani SM, Masoodi FA, Ahmad M, Mir SA (2018) Processing and storage of apricots: effect on physicochemical and antioxidant properties. Journal of food science and technology 55:4505CrossRefGoogle Scholar
  69. Webster AD, Spencer JE (2000) Fruit thinning plums and apricots. Plant Growth Regul 31(1):101–112CrossRefGoogle Scholar
  70. Yamaguchi M, Haji T, Yaegaki H (2004) Differences in mesocarp cell number, cell length and occurrence of gumming in fruit of Japanese apricot (Prunus mume Sieb. et Zucc.) cultivars during their development. J Jpn Soc Hortic Sci 73(3):200–207CrossRefGoogle Scholar
  71. Yamane H (2014) Regulation of bud dormancy and bud break in Japanese apricot (Prunus mume Siebold & Zucc.) and peach [Prunus persica (L.) Batsch]: a summary of recent studies. J Jpn Soc Hortic Sci 83:187–202CrossRefGoogle Scholar
  72. Yamshanov VA, Kovan’ko EG, Pustovalov YI (2016) Effects of amygdaline from apricot kernel on transplanted tumors in mice. Bull Exp Biol Med 160(5):712–714CrossRefGoogle Scholar
  73. Yilmaz KU, Gurcan K (2012) Genetic diversity in apricot. In: Genetic diversity in plants. InTech, pp 249–270Google Scholar
  74. Yilmaz I, Karaman A, Vardi N, Cetin A, Erdemli E (2013) Effects of organic apricot on liver regeneration after partial hepatectomy in rats. Transplant Proc 45(6):2455–2460CrossRefGoogle Scholar
  75. Yılmaz KU, Ercişli S, Asma BM, Doğan Y, Kafkas S (2009) Genetic relatedness in Prunus genus revealed by inter-simple sequence repeat markers. HortScience 44(2):293–297Google Scholar
  76. Yoshida M (1998) Classification of apricot varieties by RAPD analysis. J Jpn Soc Hort Sci 67:2127Google Scholar
  77. Zhang Q-P, Liu D-C, Liu S, Liu N, Wei X, Zhang A-M, Liu W-S (2014) Genetic diversity and relationships of common apricot (Prunus armeniaca L.) in China based on simple sequence repeat (SSR) markers. Genet Resour Crop Evol 61(2):357–368CrossRefGoogle Scholar
  78. Zhong W, Gao Z, Zhuang W, Shi T, Zhang Z, Ni Z (2013) Genome-wide expression profiles of seasonal bud dormancy at four critical stages in Japanese apricot. Plant Mol Biol 83(3):247–264CrossRefGoogle Scholar

Copyright information

© Association of Food Scientists & Technologists (India) 2018

Authors and Affiliations

  1. 1.FrenXiv; https://frenxiv.orgParisFrance
  2. 2.Nigde Omer Halisdemir UniversityNigdeTurkey

Personalised recommendations