Advertisement

Effects of sprouted and fermented quinoa (Chenopodium quinoa) on glycemic index of diet and biochemical parameters of blood of Wistar rats fed high carbohydrate diet

  • Cristiane de Oliveira Lopes
  • Maria de Fátima Píccolo Barcelos
  • Cíntia Nayara de Goes Vieira
  • Wilson César de Abreu
  • Eric Batista Ferreira
  • Rafaela Corrêa Pereira
  • Michel Cardoso de Angelis-Pereira
Original Article
  • 36 Downloads

Abstract

Sprouted and fermented foods have shown hypoglycemic effects on humans and animals, by reducing concentrations of soluble carbohydrates, and increasing dietary fiber and resistant starch content. In this study, diets with high levels of simple carbohydrates supplemented with toasted quinoa flour, sprouted and toasted quinoa flour, fermented and toasted quinoa flour or sprouted/fermented and toasted quinoa flour were given to Wistar rats. During the experiment, the glycemic index (GI) of the diets were measure and, at the end of 47 days of feeding, the effects of the diets on physical and biochemical parameters of the animals were evaluated. Results indicated that the processes of sprouting and/or fermentation potentiate the ability of quinoa to reduce GI of diets with high levels of simple carbohydrates. Moreover, food intake, blood glucose and lipid levels, and accumulation of epididymal adipose tissue were reduced in rats fed diets supplemented with quinoa. These effects may be due to the nutritional composition of the supplemented diets, besides the chemical changes promoted by processing quinoa. These results are particularly relevant once sprouted and fermented quinoa could be an alimentary source of interest, especially for disease risk prevention such as diabetes, obesity and dyslipidemias.

Keywords

Adipose tissue Blood glucose Cholesterol Glycated hemoglobin Glycemic index 

Notes

Acknowledgements

The authors thank the Federal University of Lavras (Universidade Federal de Lavras, UFLA), Lavras/Minas Gerais (MG) and the Minas Gerais Research Foundation (Fundação de Amparo a Pesquisa de Minas Gerais, FAPEMIG) for the support for the development of this study.

References

  1. Abdel-Aal ESM, Rabalski I (2008) Effect of baking on nutritional properties of starch in organic spelt whole grain products. Food Chem 111(4):150–156CrossRefGoogle Scholar
  2. Abellán Ruiz MS, Barnuevo Espinosa MD, García Santamaría C, Contreras Fernández CJ, Aldeguer García M, Soto Méndez F, Guillén Guillén I, Luque Rubia AJ, Quinde Ràzuri FJ, Martínez Garrido A, López Román FJ (2017) Effect of quinua (Chenopodium quinoa) consumption as a coadjuvant in nutritional intervention in prediabetic subjects. Nutr Hosp 34(5):1163–1169PubMedGoogle Scholar
  3. AOAC International (2007) Official methods of analysis, 18th edn. AOAC International, GaithersburgGoogle Scholar
  4. Augustin LS, Kendall CW, Jenkins DJ, Willett WC, Astrup A, Barclay AW et al (2015) Glycemic index, glycemic load and glycemic response: an International Scientific Consensus Summit from the International Carbohydrate Quality Consortium (ICQC). Nutr Metab Cardiovasc Dis 25(9):795–815CrossRefGoogle Scholar
  5. Avancini SRP (2007) Caracterização química, microbiológica e toxicológica da água da fermentação do amido de mandioca. Universidade Federal de Santa Catarina, Florianópolis, p 104Google Scholar
  6. Bem AF, Kunde JA (2006) Importância da hemoglobina glicada no monitoramento das complicações crônicas do diabetes mellitus. J Bras Patol Med Lab 42(3):185–191CrossRefGoogle Scholar
  7. Berti C, Riso P, Monti LD, Porrini M (2004) In vitro starch digestibility and in vivo glucose response of gluten-free foods and their gluten counterparts. Eur J Nutr 43(4):198–204CrossRefGoogle Scholar
  8. Berti C, Riso P, Brusamolino A, Porrini M (2005) Effect on appetite control of minor cereal and pseudocereal products. Br J Nutr 94(5):850–858CrossRefGoogle Scholar
  9. Brighenti F, Benini L, Del Rio D, Casiraghi C, Pellegrini N, Scazzina F, Jenkins DJ, Vantini I (2006) Colonic fermentation of indigestible carbohydrates contributes to the second-meal effect. Am J Clin Nutr 83(4):817–822CrossRefGoogle Scholar
  10. Cereda MP (1983) Padronização para ensaios de qualidade de fécula fermentada de mandioca (polvilho azedo): I. Formulação e preparo de biscoitos. B Soc Bras Ciênc Tecnol Alimen 17(3):287–295Google Scholar
  11. Dashty M (2013) A quick look at biochemistry: carbohydrate metabolism. Clin Biochem 46(15):1339–1352CrossRefGoogle Scholar
  12. De Angelis-Pereira MC, Barcelos MFP, Pereira JAR, Pereira RC, de Sousa RV (2016) Chemical composition of unripe banana peels and pulps flours and its effects on blood glucose of rats. Nutr Food Sci 46(4):504–516CrossRefGoogle Scholar
  13. Diowksz A, Kordialik-Bogacka E, Ambroziak W (2014) Se-enriched sprouted seeds as functional additives in sourdough fermentation. LWT Food Sci Technol 56:524–528CrossRefGoogle Scholar
  14. Ferreira DF (2008) Sisvar: um programa para análise e ensino de estatística. Rev Symp 6(4):36–41Google Scholar
  15. Hsu TF, Kise M, Wang MF, Ito Y, Yang MD, Aoto H, Yoshihara R, Yokoyama J, Kunii D, Yamamoto S (2008) Effects of pre-sprouted brown rice on blood glucose and lipid levels in free-living patients with impaired fasting glucose or type 2 diabetes. J Nutr Sci Vitaminol 54(2):163–168CrossRefGoogle Scholar
  16. Kabir M, Guerre-Millo M, Laromiguiere M, Slama G, Rizkalla SW (2000) Negative regulation of leptin by chronic high-glycemic index starch diet. Metabolism 49(6):764–769CrossRefGoogle Scholar
  17. Lattimer JM, Haub MD (2010) Effects of dietary fiber and its components on metabolic health. Nutrients 2(12):1266–1289CrossRefGoogle Scholar
  18. Lerer-Metzger M, Rizkalla SW, Luo J, Champ M, Kabir M, Bruzzo F, Bornet F, Slama G (1996) Effects of long-term low-glycaemic index starchy food on plasma glucose and lipid concentrations and adipose tissue cellularity in normal and diabetic rats. Br J Nutr 75(5):723–732CrossRefGoogle Scholar
  19. Ludwig DS (2002) The glycemic index physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. JAMA 287(18):2414–2423CrossRefGoogle Scholar
  20. Navarro-Perez D, Radcliffe J, Tierney A, Jois M (2017) Quinoa seed lowers serum triglycerides in overweight and obese subjects: a dose–response randomized controlled clinical trial. Curr Dev Nutr 1(9):e001321CrossRefGoogle Scholar
  21. Onwulata C, Thomas-Gahring A, Cooke P, Phillips J, Carvalho CW, Ascheri JL, Tomasula P (2008) Production of extruded barley, cassava, corn and quinoa enriched with whey proteins and cashew pulp. Int J Food Prop 37(8):362–371Google Scholar
  22. Östaman EM, Nilsso M, Liljeberg Elmstahl HGM, Molin G, Bjorck IME (2002) On the effect of lactic acid on blood glucose and insulin responses to cereal products: mechanistic studies in healthy subjects and in vitro. J Cereal Sci 36(2):339–346CrossRefGoogle Scholar
  23. Östman EM, Liljeberg Elmståhl HG, Björck IM (2001) Inconsistency between glycemic and insulinemic responses to regular and fermented milk products. Am J Clin Nutr 74(1):96–100CrossRefGoogle Scholar
  24. Östman EM, Granfeldt Y, Persson L, Björck IM (2005) Vinegar supplementation lowers glucose and insulin responses and increases satiety after a bread meal in healthy subjects. Eur J Clin Nutr 59(9):983–988CrossRefGoogle Scholar
  25. Paśko P, Zagrodzki P, Bartoń H, Chłopicka J, Gorinstein S (2010) Effect of quinoa seeds (Chenopodium quinoa) in diet on some biochemical parameters and essential elements in blood of high fructose-fed rats. Plant Foods Hum Nutr 65(4):333–338CrossRefGoogle Scholar
  26. Pellet PL, Young VR (1980) Evaluation of protein quality in experimental animals. In: Nutritional evaluation of protein foods. The United Nations University, TokyoGoogle Scholar
  27. Reeves PG, Nielsen FH, Fahey GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123(11):1939–1951CrossRefGoogle Scholar
  28. Sacks FM, Carey VJ, Anderson CA, Miller ER, Copeland T, Charleston J, Harshfield BJ, Laranjo N, McCarron P, Swain J, White K, Yee K, Appel LJ (2014) Effects of high vs low glycemic index of dietary carbohydrate on cardiovascular disease risk factors and insulin sensitivity: the OmniCarb randomized clinical trial. JAMA 312(23):2531–2541CrossRefGoogle Scholar
  29. Scazzina F, Del Rio D, Pellegrini N, Brighenti F (2009) Sourdough bread: starch digestibility and postprandial glycemic response. J Cereal Sci 49(11):419–421CrossRefGoogle Scholar
  30. Schabes FI, Sigstad EE (2004) Calorimetric studies of quinoa (Chenopodium quinoa Willd.) seed germination under saline stress conditions. Thermochim Acta 428(8):71–75Google Scholar
  31. Seki T, Nagase R, Torimitsu M, Yanagi M, Ito Y, Kise M, Mizukuchi A, Fujimura N, Hayamizu K, Ariga T (2005) Insoluble fiber is a major constituent responsible for lowering the post-prandial blood glucose concentration in pre-sprouted brown rice. Biol Pharm Bull 28(8):1539–1541CrossRefGoogle Scholar
  32. Silva RN, Duarte GL, Lopes NF, de Moraes DM, Pereira AAA (2008) Composição química de sementes de trigo (Triticum aestivum L.) submetidas a estresse salino na germinação. Rev Bras Sementes 30(1):148–155Google Scholar
  33. Singh AK, Rehal J, Kaur A, Jyot G (2015) Enhancement of attributes of cereals by germination and fermentation: a review. Crit Rev Food Sci Nutr 55:1575–1589CrossRefGoogle Scholar
  34. Stamataki NS, Yanni AE, Karathanos VT (2017) Bread making technology influences postprandial glucose response: a review of the clinical evidence. Br J Nutr 117(7):1001–1012CrossRefGoogle Scholar
  35. Takao T, Watanabe N, Yuhara K, Konishi Y (2005) Hypocholesterolemic efect of protein isolated from quinoa (Chenopodium quinoa Willd.) seeds. Food Sci Technol Res 11(2):161–167CrossRefGoogle Scholar
  36. Yamakawa T, Sakamoto R, Takahashi K, Suzuki J, Matuura-Shinoda M, Takahashi M, Shigematsu E, Tanaka S, Kaneshiro M, Asakura T, Kawata T, Yamada Y, Osada UN, Isozaki T, Takahashi A, Kadonosono K, Terauchi Y (2018) Dietary survey in Japanese patients with type 2 diabetes and influence of dietary carbohydrate on hemoglobin A1c: the Soreka study. J Diabetes Investig.  https://doi.org/10.1111/jdi.12903 CrossRefPubMedGoogle Scholar

Copyright information

© Association of Food Scientists & Technologists (India) 2018

Authors and Affiliations

  • Cristiane de Oliveira Lopes
    • 1
  • Maria de Fátima Píccolo Barcelos
    • 1
  • Cíntia Nayara de Goes Vieira
    • 2
  • Wilson César de Abreu
    • 2
  • Eric Batista Ferreira
    • 3
  • Rafaela Corrêa Pereira
    • 2
  • Michel Cardoso de Angelis-Pereira
    • 2
  1. 1.Department of Food ScienceFederal University of Lavras (UFLA)LavrasBrazil
  2. 2.Department of NutritionFederal University of Lavras (UFLA)LavrasBrazil
  3. 3.Institute of Exact SciencesFederal University of AlfenasAlfenasBrazil

Personalised recommendations