Journal of Food Science and Technology

, Volume 55, Issue 10, pp 4090–4098 | Cite as

Effect of supercritical carbon dioxide processing on Vibrio parahaemolyticus in nutrient broth and in oysters (Crassostrea gigas)

  • Katherine H. O. de Matos
  • Lindomar A. Lerin
  • Douglas Soares
  • Lenilton Santos Soares
  • Marieli de Lima
  • Alcilene R. Monteiro
  • J. Vladimir OliveiraEmail author
Original Article


This study aimed to evaluate the technical feasibility of supercritical carbon dioxide (sc-CO2) treatment for Vibrio parahaemolyticus inactivation in oysters (Crassostrea gigas) and in nutrient broth. For this purpose, a variable-volume reactor was used as experimental system and a 23 factorial design was adopted considering the mass ratio between carbon dioxide and the product, pressurization and depressurization rate and pressurization cycles. Through statistical analysis of the experimental data, the mass ratio of 1:0.8 (product:carbon dioxide), depressurization rate of 10.0 MPa/min and one cycle of pressurization was determined as the best process condition to eliminate V. parahaemolyticus, and this was the condition used for the inactivation kinetic analysis. Comparison between the inactivation kinetics of V. parahaemolyticus showed that the behavior of this microorganism inactivation depends on the environment in which it operates and its initial count. The results confirm that the supercritical carbon dioxide is effective in inactivating microorganisms in oysters, including pathogenic V. parahaemolyticus, demonstrating the potential of this technology in the food industry.


Oysters Vibrio parahaemolyticus Supercritical carbon dioxide Inactivation 



This work was supported by the Brazilian financial support agencies CNPq, CAPES and FINEP.


  1. APHA - American Public Health Association (2001) Standard methods for the examination of water and wastewater, 20th edn. APHA, American Water Works Association (AWWA) and Water Environment Federation (WEF), Baltimore, MDGoogle Scholar
  2. Aragão GMF, Corradini MG, Normand MD, Peleg M (2007) Evaluation of the weibull and log normal distribution functions as survival models of Escherichia coli under isothermal and non isothermal conditions. Int J Food Microb 119:243–257. CrossRefGoogle Scholar
  3. Calvo L, Torres E (2010) Microbial inactivation of paprika using high-pressure CO2. J Supercrit Fluids 52:134–141. CrossRefGoogle Scholar
  4. Ceni G, Silva MF, Junior Valério C, Cansian RL, Oliveira JV, Rosa CD, Mazutti M (2016) Continuous inactivation of alkaline phosphatase and Escherichia coli in milk using compressed carbon dioxide as inactivating agent. J CO2 Utilizat 13:24–28. CrossRefGoogle Scholar
  5. Checinska A, Fruth IA, Green TL, Crawford RL, Paszczynski AJ (2011) Sterilization of biological pathogens using supercritical fluid carbon dioxide containing water and hydrogen peroxide. J Microbiol Methods 87:70–75. CrossRefPubMedGoogle Scholar
  6. Erkmen O (1997) Antimicrobial effect of pressurized carbon dioxide on Staphylococcus aureus in broth and milk. Food Sci Technol 30:826–829. CrossRefGoogle Scholar
  7. Erkmen O (2000) Antimicrobial effects of pressurised carbon dioxide on Brochothrix thermosphacta in broth and foods. J Sci Food Agric 80:1365–1370.<1365:AID-JSFA652>3.0.CO;2-PCrossRefGoogle Scholar
  8. Erkmen O (2001) Effects of high-pressure carbon dioxide on Escherichia coli in nutrient broth and milk. Int J Food Microb 65:131–135. CrossRefGoogle Scholar
  9. Erkmen O, Karaman H (2001) Kinetic studies on the high pressure carbon dioxide inactivation of Salmonella typhimurium. J Food Eng 50:25–28. CrossRefGoogle Scholar
  10. FDA - United States Food and Drug Administration (2009) National Shellfish sanitation program (NSSP) guide for the control of molluscan shellfish: 2015 revision. Accessed 24 Sep 2017
  11. Ferrentino G, Balzan S, Spilimbergo S (2013) Optimization of supercritical carbon dioxide treatment for the inactivation of the natural microbial flora in cubed cooked ham. Int J Food Microb 161:189–196. CrossRefGoogle Scholar
  12. Galvanin F, De Luca R, Ferrentino G, Barolo M, Spilimbergo S, Bezzo F (2014) Bacterial inactivation on solid food matrices through supercritical CO2: a correlative study. J Food Eng 120(2014):146–157. CrossRefGoogle Scholar
  13. Garcia-Gonzalez L, Geeraerd AH, Spilimbergo K, Elst K, van Ginneken L, Debevere J, Impe JF, van Devlieghere F (2007) High pressure carbon dioxide inactivation of microorganisms in foods: the past, the present and the future. Int J Food Microb 117:1–28. CrossRefGoogle Scholar
  14. Garcia-Gonzalez L, Geeraerd AH, Elst K, van Ginneken L, Impe JF, van Devlieghere JF (2009) Inactivation of naturally occurring microorganisms in liquid whole egg using high pressure carbon dioxide processing as an alternative to heat pasteurization. J Supercrit Fluids 51:74–82. CrossRefGoogle Scholar
  15. Gunes G, Blum LK, Hotchkiss JH (2005) Inactivation of yeasts in grape juice using a continuous dense phase carbon dioxide processing system. J Sci Food Agricult 85:2362–2368. CrossRefGoogle Scholar
  16. Gunes G, Blum LK, Hotchkiss JH (2006) Inactivation of Escherichia coli (ATCC 4157) in diluted apple cider by dense-phase carbon dioxide. J Food Prot 69:12–16. CrossRefPubMedGoogle Scholar
  17. Jay JM (2000) Modern food microbiology. In: Gaithersburg M (ed) 6th edn. Aspen PublishersGoogle Scholar
  18. Ji H, Zhang L, Liu S, Qu C, Zhang C, Gao J (2012) Optimization of microbial inactivation of shrimp by dense phase carbon dioxide. Int J Food Microb 156:44–49. CrossRefGoogle Scholar
  19. Jones S (2009) Microbial contamination and shellfish safety. In: Shumway SE, Rodrick GE (eds) Shellfish safety and quality. CRC Press LLC, Boca Raton. CrossRefGoogle Scholar
  20. Lee RJ, Rangdale RE, Croci L, Hervio-Heath D, Lozach S (2008) Bacterial pathogens in seafood. In: Bùrresen Torger (ed) Improving seafood products for the consumer. CRC Press LLC, Boca RatonGoogle Scholar
  21. Lin H, Yang Z, Chen L-F (1992) Inactivation of Saccharomyces cerevisiae by supercritical and subcritical carbon dioxide. Biotechnol Progress 8:458–461. CrossRefGoogle Scholar
  22. Lin H-M, Cao N, Chen L-F (1994) Antimicrobial effect of pressurized carbon dioxide on Listeria monocytogenes. J Food Sci 59:657–659. CrossRefGoogle Scholar
  23. Mafart P, Couvert O, Gaillard S, Leguerinel I (2002) On calculating sterility in thermal preservation methods: application of the weibull frequency distribution model. Int J Food Microb 72:107–113. CrossRefGoogle Scholar
  24. Meujo DAF, Kevin DA, Peng J, Bowling JJ, Liu J, Hamann MJ (2010) Reducing oyster-associated bacteria levels using supercritical fluid CO2 as an agent of warm pasteurization. Int J Food Microb 138:63–70. CrossRefGoogle Scholar
  25. Ortuño C, Martínez-Pastor MT, Mulet A, Benedito J (2012) An ultrasound-enhanced system for microbial inactivation using supercritical carbon dioxide. Innov Food Sci Emerg Technol 15:31–37. CrossRefGoogle Scholar
  26. Park HS, Lee YH, Kim W, Choi HJ, Kim KH (2012) Disinfection of wheat grains contaminated with Penicillium oxalicum spores by a supercritical carbon dioxide-water cosolvent system. Int J Food Microb 156:239–244. CrossRefGoogle Scholar
  27. Potasman I, Paz A, Odeh M (2002) Infectious outbreaks associated with bivalve shellfish consumption: a worldwide perspective. Clin Infect Dis 35:921–928. CrossRefPubMedGoogle Scholar
  28. Raszl SM, Froelich BA, Vieira CRW, Blackwood DA, Noble RT (2016) Vibrio parahaemolyticus and Vibrio vulnificus in South America: water, seafood, and human Infections. J Appl Microb 121:1201–1222. CrossRefGoogle Scholar
  29. Sikin AM, Walkling-Ribeiro M, Rizvi SSH (2016) Synergistic effect of supercritical carbon dioxide and peracetic acid on microbial inactivation in shredded Mozzarella-type cheese and its storage stability at ambient temperature. Food Control 70:174–182. CrossRefGoogle Scholar
  30. Silva JM, Rigo AA, Dalmolin IA, Debien I, Cansian RL, Oliveira JV, Mazutti MA (2013) Effect of pressure, depressurization rate and pressure cycling on the inactivation of escherichia coli by supercritical carbon dioxide. Food Control 29:76–81. CrossRefGoogle Scholar
  31. Soares D, Lerin LA, Cansian RL, Oliveira JV, Mazutti MA (2013) Inactivation of Listeria monocytogenes using supercritical carbon dioxide in a high-pressure variable-volume reactor. Food Control 31:514–518. CrossRefGoogle Scholar
  32. Spilimbergo S, Elvassore N, Bertucco A (2002) Microbial inactivation by high-pressure. J Supercrit Fluids 22:55–63. CrossRefGoogle Scholar
  33. Teplitski M, Wright AC, Lorca G (2009) Biological approaches for controlling shellfish-associated pathogens. Curr Opin Biotechnol 20:185–190. CrossRefPubMedGoogle Scholar
  34. Ye M, Huang Y, Chen H (2012) Inactivation of Vibrio parahaemolyticus and Vibrio vulnificus in oysters by high-hydrostatic pressure and mild heat. Food Microb 32:179–184. CrossRefGoogle Scholar
  35. Yuk H-G, Geveke DJ, Zhang HQ (2010) Efficacy of supercritical carbon dioxide for nonthermal inactivation of Escherichia coli K12 in apple cider. Int J Food Microb 138:91–99. CrossRefGoogle Scholar

Copyright information

© Association of Food Scientists & Technologists (India) 2018

Authors and Affiliations

  • Katherine H. O. de Matos
    • 1
    • 2
  • Lindomar A. Lerin
    • 1
  • Douglas Soares
    • 1
  • Lenilton Santos Soares
    • 1
  • Marieli de Lima
    • 1
  • Alcilene R. Monteiro
    • 1
  • J. Vladimir Oliveira
    • 1
    Email author
  1. 1.Department of Chemical and Food Engineering – EQAFederal University of Santa Catarina - UFSCFlorianópolisBrazil
  2. 2.Department of Innovation and TechnologySENAI Santa CatarinaFlorianópolisBrazil

Personalised recommendations