Advertisement

Elemental composition and nutritional value of Araucaria angustifolia seeds from subtropical Brazil

  • Julierme Zimmer BarbosaEmail author
  • Caio Ricardo dos Santos Domingues
  • Giovana Clarice Poggere
  • Antonio Carlos Vargas Motta
  • André Rodrigues dos Reis
  • Milton Ferreira de Moraes
  • Stephen Arthur Prior
Short Communication
  • 49 Downloads

Abstract

Consumed by populations in South America, Araucaria angustifolia seeds have received little study regarding elemental composition and nutritional value. Thirty-five seed sites from subtropical Brazil were sampled and seed concentrations of C, N, K, Ca, Mg, P, Fe, Zn, Mn, Cu, Mo, Ni, Co, Cr, Ba, and Cd were determined. The highest concentration of N was observed in samples from regions with Cfa climate (humid subtropical, oceanic climate, without dry season with hot summer) and igneous rock, which was superior to regions with Cfb climate (humid subtropical, oceanic climate, without dry season with temperate summer) and metamorphic rock. Seeds can be a source of nutrients: K (11.8 g kg−1), P (4.1 g kg−1), Mn (9.1 mg kg−1), Cu (7.2 mg kg−1), Mo (0.93 mg kg−1), and Cr (0.65 mg kg−1). Values for Ba (0.93 mg kg−1) and Cd (0.19 mg kg−1) indicated no risk to human health. This study expands knowledge regarding the elemental composition of A. angustifolia. Results indicate that these seeds have nutritional value, and their consumption can be a good strategy to improve overall human nutrition in this region of South America.

Keywords

Recommended dietary allowances Trace elements Environmental variation Conifers 

Notes

Acknowledgements

The authors are grateful to Sérgio Mudrovitsch de Bittencourt (Emater), Oromar Bertol (Emater), Gervazia Zimmer, Elaine Inês Zimmer, Marisane Antunes, Rosemari Poggere, Michael Kreusch, Tiago Budziak, Gasparina Mendes França Buratto, Jacy Buratto and Delmar Santin for help in seeds collection and to Elidiane da Silva for design of study area map.

Supplementary material

13197_2018_3555_MOESM1_ESM.pdf (102 kb)
Supplementary material 1 (PDF 102 kb)
13197_2018_3555_MOESM2_ESM.pdf (126 kb)
Supplementary material 2 (PDF 126 kb)

References

  1. Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z.  https://doi.org/10.1127/0941-2948/2013/0507 Google Scholar
  2. Anderson KA, Smith BW (2005) Use of chemical profiling to differentiate geographic growing origin of raw pistachios. J Agric Food Chem 53:410–418.  https://doi.org/10.1021/jf048907u CrossRefGoogle Scholar
  3. Barbosa JZ, Constantino V, Zanette F, Motta ACV, Prior SA (2017) Soil fertility affects elemental distribution in needles of the conifer Araucaria angustifolia: a microanalytical study. Cerne 23:257–266.  https://doi.org/10.1590/0104776020172302313 CrossRefGoogle Scholar
  4. CAC (2015) General standard for contaminants and toxins in food and feed. Food and Agriculture Organization/Word Health Organization, RomeGoogle Scholar
  5. Cordenunsi BR, Menezes EW, Genovese MI, Colli C, Souza AG, Lajolo F (2004) Chemical composition and glycemic index of Brazilian pine (Araucaria angustifolia) seeds. J Agric Food Chem 52:3412–3416.  https://doi.org/10.1021/jf034814l CrossRefGoogle Scholar
  6. FSA (2003) Safe upper levels for vitamins and minerals. Food Standards Agency, YorkGoogle Scholar
  7. IOM (2001) Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academy Press, WashingtonGoogle Scholar
  8. King JC, Blumberg J, Ingwersen L, Jenab M, Tucker KL (2008) Tree nuts and peanuts as components of a healthy diet. J Nutr 138:1736–1740.  https://doi.org/10.1093/jn/138.9.1736S CrossRefGoogle Scholar
  9. Leite DM, Jong EV, Noreña CP, Brandelli A (2008) Nutritional evaluation of Araucaria angustifolia seed flour as a protein complement for growing rats. J Sci Food Agric 88:1166–1171.  https://doi.org/10.1002/jsfa.3192 CrossRefGoogle Scholar
  10. Liang Y, Qing T, Zhang SX, Yin KX, Qin JY (2015) Determination of trace elements in edible nuts in the Beijing market by ICP-MS. Biomed Environ Sci 28:449–454.  https://doi.org/10.3967/bes2015.063 Google Scholar
  11. Naozuka J, Vieira EC, Nascimento NA, Oliveira PV (2011) Elemental analysis of nuts and seeds by axially viewed ICP OES. Food Chem 124:1667–1672.  https://doi.org/10.1016/j.foodchem.2010.07.051 CrossRefGoogle Scholar
  12. NEPA (2011) Tabela brasileira de composição de alimentos. NEPA-UNICAMP, CampinasGoogle Scholar
  13. Özkutlu F, Dogru YZ, Özenç N, Yazici G, Turan M, Akçay F (2011) The importance of Turkish hazelnut trace and heavy metal contents for human nutrition. J Soil Sci Environ Manag 2:25–33Google Scholar
  14. Polet JP, Oliveira VR, Rios ADO, Souza CGD (2017) Physico-chemical and sensory characteristics of gluten-free breads made with pine nuts (Araucaria angustifolia) associated to other flours. J Culin Sci Technol.  https://doi.org/10.1080/15428052.2017.1405861 Google Scholar
  15. Rabel DO, Motta ACV, Barbosa JZ, Melo VF, Prior SA (2018) Depth distribution of exchangeable aluminum in acid soils: a study from subtropical Brazil. Acta Sci Agron 40:e39320.  https://doi.org/10.4025/actasciagron.v40i1.39320 CrossRefGoogle Scholar
  16. Reis MS, Ladio A, Peroni N (2014) Landscapes with Araucaria in South America: evidence for a cultural dimension. Ecol Soc.  https://doi.org/10.5751/es-06163-190243 Google Scholar
  17. Rodushkin I, Engström E, Sörlin D, Baxter D (2008) Levels of inorganic constituents in raw nuts and seeds on the Swedish market. Sci Total Environ 392:290–304.  https://doi.org/10.1016/j.scitotenv.2007.11.024 CrossRefGoogle Scholar
  18. SCHER (2012) Assessment of the tolerable daily intake of barium. European Commission, BrusselsGoogle Scholar
  19. Schveitzer B, Rosa AM, Granemann P, Klock AL, Rizzatti IM, Foppa T (2014) Caracterização química de pinhões – sementes de Araucaria angustifolia – em diferentes formas de preparo. Rev Interdiscip Estud Saúde 3:93–104Google Scholar
  20. Souza NE, Rodrigues AC, Souza AHP, Matsushita M, Pedrão MR, Dias LF (2014) Quantification of minerals and topopherols isomers in chestnuts approach chemometrics. Semina Ciênc Agrár 35:2427–2436.  https://doi.org/10.5433/1679-0359.2014v35n5p2427 CrossRefGoogle Scholar
  21. USEPA (2007) SW-846 Test method 3051A: microwave assisted acid digestion of sediments, sludges, soils, and oils. Office of Solid Waste/USEPA, WashingtonGoogle Scholar
  22. Vanhanen LP, Savage GP (2013) Mineral analysis of pine nuts (Pinus spp.) grown in New Zealand. Foods 2:143–150.  https://doi.org/10.3390/foods2020143 CrossRefGoogle Scholar
  23. White PJ (2012) Ion uptake mechanisms of individual cells and roots: short-distance transport. In: Marschner P (ed) Marschner’s mineral nutrition of higher plants. Academic Press/Elsevier, Amsterdam, pp 7–47CrossRefGoogle Scholar
  24. WHO (1996) Trace elements in human nutrition and health. WHO Library, GenevaGoogle Scholar
  25. Young VR, Pellett PL (1994) Plant proteins in relation to human protein and amino acid nutrition. Am J Clin Nutr 59:1203–1212CrossRefGoogle Scholar

Copyright information

© Association of Food Scientists & Technologists (India) 2019

Authors and Affiliations

  • Julierme Zimmer Barbosa
    • 1
    Email author
  • Caio Ricardo dos Santos Domingues
    • 2
  • Giovana Clarice Poggere
    • 3
  • Antonio Carlos Vargas Motta
    • 2
  • André Rodrigues dos Reis
    • 4
  • Milton Ferreira de Moraes
    • 5
  • Stephen Arthur Prior
    • 6
  1. 1.Department of AgronomyIngá University Center (Uningá)MaringáBrazil
  2. 2.Department of Soils and Agricultural EngineeringFederal University of ParanáCuritibaBrazil
  3. 3.Department of Biological and Environmental SciencesFederal University of Technology – ParanáMedianeiraBrazil
  4. 4.Biosystems EngineeringSão Paulo State UniversityTupãBrazil
  5. 5.Federal University of Mato GrossoBarra do GarçasBrazil
  6. 6.USDA-ARS National Soil Dynamics LaboratoryAuburnUSA

Personalised recommendations