Journal of the Indian Academy of Wood Science

, Volume 16, Issue 2, pp 94–102 | Cite as

Effect of granulometry and binder rate on the physical, thermal and mechanical properties of Africa antiaris (Antiaris africana) sawdust particleboard made with the tannic powder of African locust been pod husk (Parkia biglobosa) and the India tamarind (Pithecellobium dulce) peel

  • Soviwadan Drovou
  • Komlan A. Kassegne
  • Komi Kadja
  • Yao KoutsawaEmail author
  • Komla Sanda
Original Article


This study aims at appraising the capability of tannic powders of African locust been pod husks (Parkia Biglobosa) and of the India tamarind (Pithecellobium dulce) peel to bind Africa antiaris sawdust particles in order to manufacture environmental panels without formaldehyde emission. In the process, the granulometry has been studied. Thus, four granular groups (g) are obtained: 1.6 < g ≤ 5; 0.8 < g ≤ 1.6; g ≤ 0.8; and the raw sawdust (non-sieved). The panels produced from the different powders have been characterized. The mechanical characteristics (MOE: modulus of elasticity and MOR: modulus of rupture) determined by the bending tests are found to respect the threshold specified by the ANSI A208.1 (Medium density fiberboard, National Particleboard Association, Gaithersburg, 2009) standard. The thermal conductivity values of the panels allow concluding that the manufactured panels are conventional insulators according to the French standards RT 2012. The analyses have shown that the panels are of Mean Density in conformity with ANSI A208.1 (Medium density fiberboard, National Particleboard Association, Gaithersburg, 2009) standard.


Particleboards Tannic powder Locust been pod husks India tamarind peel Thermal properties Mechanical properties 



The researchers are grateful to the Ministry of Agriculture, stock and fishing for the financial backing of this Project via the PPAAO-TOGO. May the coordinator receive our congratulations. We also show our gratitude to the responsible of LERMAB mainly to André MERLIN from the University of Lorraine as well as the manager of ENSTIB for our welcoming in their testing laboratory, forgetting not the one in charge of FEMTO – ST, namely Emmanuel FOLTETE of the University of Franche Comté.


  1. ANSI A208.1 (2009) Medium density fiberboard. National Particleboard Association, GaithersburgGoogle Scholar
  2. Bhagwat S (1971) Physical and mechanical variations in cottonwood and hickory flakeboards made from flakes of three sizes. Forest Prod J 21(9):101–103Google Scholar
  3. Brumbaugh J (1960) Effect of flake dimension on properties of particleboard. For Prod J 59(6):144–147Google Scholar
  4. Chow P (1978) Phenol adhesive bonded medium-density fiberboard from Quercus rubra L. bark and sawdust. Wood Fiber Sci 11(2):92–98Google Scholar
  5. Drovou S, Pizzi A, Lacoste C, Zhang J, Abdulla S, El-Marzouki FM (2015) Flavonoid tannins linked to long carbohydrate chains—MALD I–TOF analysis of the tannin extract of the African locust bean shells. Ind Crops Prod 77:225–231CrossRefGoogle Scholar
  6. EN 310 NF B51 – 124 (1993) Panneaux à base de bois—Détermination du module d’élasticité et de la résistance à la flexion AFNORGoogle Scholar
  7. EN 312 – 2 (2004) Panneaux de particules. Type P2, Stand P3 – MH, P4 CTBHGoogle Scholar
  8. Haselein CR (1998) Numerical simulation of pressing wood-fiber composites. Thèse de doctorat, Oregon State University Corvalis, USAGoogle Scholar
  9. Huang MT, Ferraro T (1992) Phenolic compounds in food and cancer prevention. In: ACS Sympossium Series 507. American Chemical Society, Washington DC, pp 8–34Google Scholar
  10. Kadja K (2012) Elaboration et Caractérisation mécanique et thermique des panneaux de kénaf (Hibiscus cannabinus L.) et de cotonnier (Gossypium hirsutum L.). Thèse de Doctorat, Université de LoméGoogle Scholar
  11. Kalaycioglu H, Nemli G (2006) Producing composite particleboard from kenaf (Hibiscus cannabinus L.) stalks. Ind Crops Prod 24(2):177–180CrossRefGoogle Scholar
  12. Kamke FA, Zylkowski SC (1989) Effect of wood-based panel characteristics on thermal conductivity. For Prod J 39:19–24Google Scholar
  13. Konai N, Pizzi A, Raidandi D, Lagel MC, L’Hostis C, Saidou C, Hamido A, Abdalla S, Bahabri F, Ganash A (2015) Aningre (Aningeria spp.) tannin extract characterization and performance as an adhesive resin. Ind Crops Prod 67:25–32CrossRefGoogle Scholar
  14. Lavisci P, Berti S, Pizzo B, Triboulot P, Zanuttini R (2001) A shear test for structural adhesives used in the consolidation of old timber. Holz als Roh - und Werkstoff 59(1–2):145–152CrossRefGoogle Scholar
  15. Mark HF, Bikales N, Overberger CG, Menges G, Kroschwitz JI (1989) Encyclopedia of polymer science and engineering. In: Transitions and relaxations to zwitterionic polymarization. vol 17, Wiley, New York, USAGoogle Scholar
  16. Navarrete P, Pizzi A, Pasch H, Rode K, Delmotte L (2010) MALDI TOF and 13C NMR characterization of maritime pine industrial tannin extract. Ind Crops Prod 32(2):105–110CrossRefGoogle Scholar
  17. Navarrete P, Pizzi A, Tapin-Lingua S, Benjelloun-Mlajah B, Pasch H, Rode K, Delmotte L, Rigolet S (2012) Low formaldehyde emitting biobased wood adhesives manufactured from mixtures of tannin and glyoxalated lignin. J Adhes Sci Technol 26(10–11):1667–1684Google Scholar
  18. NBN EN 310 (1994) Panneaux à base de bois – détermination du module d’élasticité en flexion et de la résistance à la flexionGoogle Scholar
  19. Neitzert F, Olsen K, Collas P (1999) Inventaire canadien des gaz à effet de serre, Émissions et absorptions de 1997 et tendancesGoogle Scholar
  20. Nenonene YA (2009) Elaboration et caractérisation mécanique de panneaux de particules de tige de kénaf et de bioadhésifs à base de colle d’os, de tannin ou de mucilage Thèse de doctorat de l’Université de Toulouse, FranceGoogle Scholar
  21. Pizzi A (2006) Recent developpement in eco-efficient bio-based adhesives for wood bonding: opportunities and issues. J Adhes Sci Technol 20:829–846CrossRefGoogle Scholar
  22. Place TA, Maloney TM (1977) Internal bond and moisture response properties of three-layer Forest prod. J Wood Bark Boards 27(3):50–54Google Scholar
  23. Sellers T Jr (2001) Wood adhesive innovations and applications in North America. For Prod J 51(6):12–72Google Scholar
  24. Siau JF (1995) Wood: influence of moisture on physical properties, Department of Wood Science and Forest Products, Virginia Polytechnic Institute and State University, USAGoogle Scholar
  25. Singh SP, Singh JP, Rawat SS (1996) Utilization of bark from populus deltoids for particleboard. Forest Products Division. Forest Research Institute Dehradun. J Indian Acad Wood Sci 26–27:15–19Google Scholar
  26. Sonderegger W, Niemz P (2009) Thermal conductivity and water vapour transmission properties of wood-based materials. Eur J Wood Wood Prod 67(3):313–321CrossRefGoogle Scholar
  27. Suleiman BM, Larfeldt J, Leckner B, Gustavssor M (1999) Thermal conductivity and diffusivity of wood. Wood Sci Technol 33(6):465–473CrossRefGoogle Scholar
  28. Tascioglu C, Tsunoda K (2010) Laboratory evaluation of wood-based composites treated with alkaline copper quat against fungal and termite attacks. Int Biodeterior Biodagradation 64:683–687CrossRefGoogle Scholar
  29. Thoemen H, Humprey P (2006) Modeling the physical processes relevant during hot pressing of wood-based composites. Part I Heat and mass transfert. Holz Roh Werkst 64:1–10CrossRefGoogle Scholar
  30. Villeneuve E (2004) Utilisation de l’écorce de peuplier faux-tremble pour la fabrication de panneaux de particules. Maîtrise en science du bois. Facultés de foresterie Université LavalGoogle Scholar
  31. Von Haas G (1998) Investigation of the hot pressing of wood composite-mats under special consideration of the compression behaviour, the permeability, the temperature conductivity and sorption-speed. Thèse de doctorat. Université Hamburg, AllemagneGoogle Scholar
  32. Xu J, Han G, Wong E (2003) Develepment of binderless particleboard from kenaf core using steam-injection pressing. J Wood Sci 49(4):327–332CrossRefGoogle Scholar
  33. Yemele MCN (2008) Développement de panneaux de particules à base d’écorce d’épinette noire et de peuplier faux tremble. Ph.D. University LAVALGoogle Scholar
  34. Zobel W, Hetfleisch J, Fricke J (1994) Measurement of thermal diffusivity with a guarded-hot-plate device using a dynamic method. Meas Sci Technol 5(7):842–846CrossRefGoogle Scholar

Copyright information

© Indian Academy of Wood Science 2019

Authors and Affiliations

  1. 1.National Advanced School of EngineersUniversity of Lomé (ENSI – UL)LoméTogo
  2. 2.Laboratory of Research on Agricultural – Resources and Environmental HealthUniversity of Lomé (LARASE – UL)LoméTogo
  3. 3.Advanced School of AgronomyUniversity of Lomé (ESA – UL)LoméTogo
  4. 4.Laboratory for the Study and Research on Wood MaterialUniversity of Lorraine (LERMAB – UL)ÉpinalFrance
  5. 5.Materials Research and Technology DepartmentLuxembourg Institute of Science and TechnologyHautcharageLuxembourg

Personalised recommendations