Advertisement

Complexity and integration. A philosophical analysis of how cancer complexity can be faced in the era of precision medicine

  • Giovanni BonioloEmail author
  • Raffaella Campaner
Paper in the Philosophy of the Biomedical Sciences
  • 8 Downloads

Abstract

Complexity and integration are longstanding widely debated issues in philosophy of science and recent contributions have largely focused on biology and biomedicine. This paper specifically considers some methodological novelties in cancer research, motivated by various features of tumours as complex diseases, and shows how they encourage some rethinking of philosophical discourses on those topics. In particular, we discuss the integrative-cluster approach, and analyse its potential in the epistemology of cancer. We suggest that, far from being the solution to tame cancer complexity, this approach offers a philosophically interesting new manner of considering integration, and show how it can help addressing the apparent contrast between a pluralistic and a unitary account.

Keywords

Complexity Integration Cancer Precision medicine 

Notes

Acknowledgements

We would like to thanks the four anonymous referees, whose comments have been very useful to improve early versions of the manuscript.

References

  1. Ali, R. H., et al. (2014). Genome-driven integrated classification of breast cancer validated in over 7,500 samples. Genome Biology, 15, 431.CrossRefGoogle Scholar
  2. Ashley, E. A. (2015). The precision medicine initiative: A new national effort. JAMA, 313, 2119–2120.CrossRefGoogle Scholar
  3. Bechtel, W., & Richardson, R. (2010). Discovering complexity. Decomposition and localization as strategies in scientific research. Cambridge: MIT Press.CrossRefGoogle Scholar
  4. Bertolaso, M. (2016). Philosophy of cancer. A dynamic and relational view. Dordrecht: Springer.CrossRefGoogle Scholar
  5. Boniolo, G. (2007). On scientific representation. From Kant to a new philosophy of science. Houndmills: Palgrave Macmillan chapter 1.Google Scholar
  6. Boniolo, G. (2017). Patchwork narratives for tumour heterogeneity. In H. Leitgeb, I. Niiniluoto, E. Sober, & P. Seppälä (Eds.), Logic, methodology and philosophy of science – Proceedings of the 15th international congress (pp. 311–324). London: College Publications.Google Scholar
  7. Boniolo, G., & Campaner, R. (2018). Molecular pathways and the contextual explanation of molecular functions. Biology and Philosophy, 33, 24.  https://doi.org/10.1007/s10539-018-9634-2.CrossRefGoogle Scholar
  8. Boniolo, G., & Nathan, M. J. (Eds.). (2017). Philosophy of molecular medicine. London: Routledge.Google Scholar
  9. Boyd, D., & Crawford, K. (2012). Provocations for a cultural, technological, and scholarly phenomenon. Information. Communications Society, 15(5), 662–679.CrossRefGoogle Scholar
  10. Bracht, K. (2009). Biomarker: Indikatoren für Diagnose und Therapie. Pharmazeutische Zeitung http://www.pharmazeutische-zeitung.de/index.php?id=29346 (Accessed 30 April 2017.
  11. Brigandt, I. (2010). Beyond reduction and pluralism: Toward an epistemology of explanatory integration in biology. Erkenntnis, 73, 295–311.CrossRefGoogle Scholar
  12. Brigandt, I. (2013). Integration in biology: Philosophical perspectives on the dynamics of interdisciplinarity. Studies in History and Philosophy of Biological and Biomedical Sciences, 44, 461–465.CrossRefGoogle Scholar
  13. Bruna, A., Rueda, O. M., Greenwood, W., Batra, A. S., Callari, M., Batra, R. N., et al. (2016). A biobank of breast cancer explants with preserved intra-tumor heterogeneity to screen anticancer compounds. Cell, 167, 260–274.CrossRefGoogle Scholar
  14. Burrell, R. A., McGranahan, N., Bartek, J., & Swanton, C. (2013). The causes and consequences of genetic heterogeneity in cancer evolution. Nature, 501, 338–345.CrossRefGoogle Scholar
  15. Cancer Genome Atlas Network. (2015). Genomic classification of cutaneous melanoma. Cell, 161, 1681–1696.  https://doi.org/10.1016/j.cell.2015.05.044.CrossRefGoogle Scholar
  16. Chang, H. (2012). Is water H 2 O? Evidence, realism and pluralism. Dordrecht: Springer.Google Scholar
  17. Collins, F. S., & Varmus, H. (2015). A new initiative on precision medicine. New England Journal of Medicine, 372, 793–795.CrossRefGoogle Scholar
  18. Conveney, P. V., Dougherty, E., & Highfield, R. (2016). Big data need big theory too. Philosophical Transactions of the Royal Society A, 374, 20160153  https://doi.org/10.1098/rsta.2016.0153.CrossRefGoogle Scholar
  19. Craver, C. (2007). Explaining the brain. Oxford: OUP.CrossRefGoogle Scholar
  20. Curtis, C., et al. (2012). The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature, 18(486), 346–352.CrossRefGoogle Scholar
  21. Dawson, S.-J., Rueda, O. M., Aparicio, S., & Caldas, C. (2013). A new genome-driven integrated classification of breast cancer and its implications. The EMBO Journal, 32, 617–628.CrossRefGoogle Scholar
  22. Fagan, M. B. (2017). In Boniolo and Nathan (Ed.), Pathways to the clinic: Cancer stem cells and challenges for translational research (pp. 165–191).Google Scholar
  23. Geyer, F. C., Weigelt, B., Natrajan, R., Lambros, M. B. K., de Biase, D., Vatcheva, R., et al. (2010). Molecular analysis reveals a genetic basis for the phenotypic diversity of metaplastic breast carcinomas. The Journal of Pathology, 220, 562–573.CrossRefGoogle Scholar
  24. Ghasemi, M., Nabipour, I., Omrani, A., Alipour, Z., & Assadi, M. (2016). Precision medicine and molecular imaging: New targeted approaches toward cancer therapeutic and diagnosis. American Journal of Nuclear Medicine and Molecular Imaging, 6(6), 310–327.Google Scholar
  25. Golubnitschaja, O., et al. (2016). Medicine in the early twenty-first century: Paradigm and anticipation - EPMA position paper 2016. EMPA Journal, 7, 23.  https://doi.org/10.1186/s13167-016-0072-4.CrossRefGoogle Scholar
  26. Goossens, N., Nakagawa, S., Sun, X., & Hoshida, Y. (2015). Cancer biomarker discovery and validation. Translational Cancer Research, 4, 256–269.Google Scholar
  27. Guinney, J., Rodrigo, D., Xin, W., de Reyniès, A., Andreas, S., Charlotte, S., et al. (2015). The consensus molecular subtypes of colorectal cancer. Nature Medicine, 21, 1350–1356.Google Scholar
  28. Hastie, T., Tibshirani, R., & Jerome, J. F. (2008). The elements of statistical learning. Data mining, inference, and prediction (pp. 502–503). New York: Springer.Google Scholar
  29. Hennig, C. (2015). What are true clusters? Pattern Recognition Letters, 64, 53–62.CrossRefGoogle Scholar
  30. Hennig, C. (2017). Cluster validation by measurement of clustering characteristics relevant to the user, arXiv:1703.09282v1[stat.ME].Google Scholar
  31. Hooker, C. (2011). Philosophy of complex systems. Amsterdam: Elsevier.Google Scholar
  32. Kaiser, M. (2013). Complexity. In W. Dubitzky, O. Wolkenhauer, K.-H. Cho, & H. Yokota (Eds.), Encyclopedia of systems biology (pp. 456–460). New York: Springer.CrossRefGoogle Scholar
  33. Kaiser, J. (2015). Obama gives east room rollout to precision medicine initiative. Science.  https://doi.org/10.1126/science.aaa6436 (Jan. 30 2015).
  34. Kitchin, R. (2014). Big data: New epistemologies and paradigm shifts. Big Data & Society, 1(1), 1–12.CrossRefGoogle Scholar
  35. Kohane, I. S. (2015). Ten things we have to do to achieve precision medicine. Science, 349, 37–38.CrossRefGoogle Scholar
  36. Koychev, I., Barkus, E., Ettinger, U., Killcross, S., Roiser, J. P., Wilkinson, L., & Deakin, B. (2011). Evaluation of state and trait biomarkers in healthy volunteers for the development of novel drug treatments in schizophrenia. Journal of Psychopharmacology, 25, 1207–1225.CrossRefGoogle Scholar
  37. Ladyman, James, and Karoline Wiesner. (Forthcoming, 2018). What is a complex system? Princeton: Princeton University Press.Google Scholar
  38. Ladyman, J., Lambert, J., & Wiesner, K. (2013). What is a complex system? European Journal for the Philosophy of Science, 3, 33–67.CrossRefGoogle Scholar
  39. Lee, J. J. (2003). Statistical methods for biomarker analysis for head and neck carcinogenesis and prevention. In J. F. Ensley, J. Silvio Gutkind, J. R. Jacobs, & S. M. Lippman (Eds.), Head and neck cancer (pp. 287–304). San Diego: Academic Press.CrossRefGoogle Scholar
  40. Lemoine, M. (2017). Molecular complexity: Why has psychiatry not been revolutionised by genomics (yet)? In Philosophy of molecular medicine, eds Giovanni Boniolo and Marco J. Nathan, ch. 4, London: Taylor and Francis.Google Scholar
  41. Leonelli, S. (2008). Bio-ontologies as tools for integration in biology. Biological Theory, 3, 8–11.CrossRefGoogle Scholar
  42. Leonelli, S. (2014). What difference does quantity make? On the epistemology of big data in biology. Big Data & Society, 1, 1–11.CrossRefGoogle Scholar
  43. Leonelli, S. (2016). Data-centric biology: A philosophical study. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  44. Martelotto, L. G., Ng, C. K. Y., Piscuoglio, S., Weigelt, B., & Reis-Filho, J. S. (2014). Breast cancer intra-tumour heterogeneity. Breast Cancer Research, 16, 210.  https://doi.org/10.1186/bcr3658.CrossRefGoogle Scholar
  45. Mehmood, M. A., Sehar, U., & Ahmad, N. (2014). Use of bioinformatics in different spheres of life sciences. Data Mining in Genomics and Proteomics, 5(2), 1000158.Google Scholar
  46. Mitchell, S. (2003). Biological complexity and integrative pluralism. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  47. Mitchell, S. (2009). Unsimple truths. Science, complexity and policy. Chicago and London: The University of Chicago Press.CrossRefGoogle Scholar
  48. Mordente, A., Meucci, E., Martorana, G. E., & Silvestrini, A. (2015). Cancer biomarkers discovery and validation: State of the art, problems and future perspectives. Advances in Experimental Medicine and Biology, 867, 9–26.CrossRefGoogle Scholar
  49. Morganella, S., Alexandrov, L. B., Glodzik, D., Zou, X., Davies, H., Staaf, J., et al. (2016). The topography of mutational processes in breast cancer genomes. Nature Communications, 7, 11383.Google Scholar
  50. Nabipour, I., & Assadi, M. (2016). Precision medicine, an approach for development of the future medicine technologies. ISMJ, 19, 167–184.Google Scholar
  51. Negm, R. S., Verma, M., & Srivastava, S. (2002). The promise of biomarkers in cancer screening and detection. Trends in Molecular Medicine, 8, 288–293.CrossRefGoogle Scholar
  52. Nik-Zainal, S., van Loo, P., Wedge, D. C., Alexandrov, L. B., Greenman, C. D., Lau, K. W., et al. (2012). The life history of 21 breast cancers. Cell, 149, 994–1007.Google Scholar
  53. Nik-Zainal, S., Davies, H., Staaf, J., Ramakrishna, M., Glodzik, D., Zou, X., et al. (2016). Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature, 534, 47–54.Google Scholar
  54. O’Malley, M. A., & Soyer, O. (2012). The roles of integration in molecular systems biology. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 43, 58–68.CrossRefGoogle Scholar
  55. Ouzounis, C. (2012). Rise and demise of bioinformatics? Promise and Progress. PLoS Computational Biology, 8(4), e1002487.CrossRefGoogle Scholar
  56. Pereira, B., Chin, S.-F., Rueda, O. M., Vollan, H.-K. M., Provenzano, E., Bardwell, H. et al. (2016). The somatic mutation profiles of 2,433 breast cancers refine their genomic and transcriptomic landscapes. Nature Communications, 7, 11479.  https://doi.org/10.1038/ncomms11479.
  57. Perez-Iratxeta, C., Andrade-Navarro, M., & Wren, J. (2007). Evolving research trends in bioinformatics. Briefings in Bioinformatics, 8(2), 88–95.CrossRefGoogle Scholar
  58. Perou, C. M., Sørlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A., et al. (2000). Molecular portraits of human breast tumours. Nature, 406, 747–752.CrossRefGoogle Scholar
  59. Plutynski, A. (2013). Cancer and the goals of integration. Studies in History and Philosophy of Biological and Biomedical Sciences, 44, 266–276.CrossRefGoogle Scholar
  60. Plutynski, Anya. (Forthcoming, 2018). Explaining cancer: Finding order in disorder. Oxford: Oxford University Press.Google Scholar
  61. Pu, F., Xue, J. Q., Patel, A., & Jenny, J. (2016a). Towards the molecular imaging of prostate cancer biomarkers using protein-based MRI contrast agents. Current Protein & Peptide Science, 17(6), 519–533.CrossRefGoogle Scholar
  62. Pu, F., Xue, S., & Yang, J. J. (2016b). ProCA1.GRPR: A new imaging agent in cancer detection. Biomarkers in Medicine, 10(5), 449–452.CrossRefGoogle Scholar
  63. Ratti, E. (2016). The end of ‘small biology’? Some thoughts about biomedicine and big science. Big Data & Society., 3, 205395171667843.  https://doi.org/10.1177/2053951716678430.CrossRefGoogle Scholar
  64. Robertson, A. G., Kim, J., al-Ahmadie, H., Bellmunt, J., Guo, G., Cherniack, A. D., et al. (2017). Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell, 171, 540–556 e25.Google Scholar
  65. Ross-Adams, H. (2015). Integration of copy number and transcriptomics provides risk stratification in prostate cancer: A discovery and validation cohort study. EBioMedicine, 2, 1133–1144.CrossRefGoogle Scholar
  66. Russnes, H. G., Lingjærde, O. C., Børresen-Dale, A. L., & Caldas, C. (2017). Breast cancer molecular stratification: From intrinsic subtypes to integrative clusters. The American Journal of Pathology, 187, 2152–2162.CrossRefGoogle Scholar
  67. Sabatello, M., & Appelbaum, P. S. (2017). The precision medicine nation. Hastings Center Report, 47(4), 19–29.CrossRefGoogle Scholar
  68. Scatena, R. (2015). Advances in cancer biomarkers. From biochemistry to clinic for a critical revision. Heidelberg: Springer.CrossRefGoogle Scholar
  69. Shyr, D., & Liu, Q. (2013). Next generation sequencing in cancer research and clinical application. Biol Procedures Online, 15, 4.  https://doi.org/10.1186/1480-9222-15-4.CrossRefGoogle Scholar
  70. Song, Q., Merajver, S. D., & Li, J. Z. (2015). Cancer classification in the genomic era: Five contemporary problems. Human Genomics, 9, 27.  https://doi.org/10.1186/s40246-015-0049-8.CrossRefGoogle Scholar
  71. Strasser, B. J. (2017). The “data-deluge”: Turning private data into public archives. In L. Daston (Ed.), Science in the archives. Pasts, presents, futures (pp. 185–202). Chicago: Chicago University Press.Google Scholar
  72. Tonelli, M. R., & Shirts, B. H. (2017). Knowledge for precision medicine. Mechanistic reasoning and methodological pluralism. Jama, 18, 1649–1650.CrossRefGoogle Scholar
  73. Torres, L., et al. (2006). Intratumour genomic heterogeneity in breast cancer with clonal divergence between primary carcinomas and lymph node metastases. Breast Cancer Research and Treatment, 102, 143–155.CrossRefGoogle Scholar
  74. Van Smeden, M., Harrell, F., & Dahly, D. (2018). Novel diabetes subtypes. The Lancet, 6, 439–440.Google Scholar
  75. Vasan, R. S. (2006). Biomarkers of cardiovascular disease molecular basis and practical considerations. Circulation, 113, 2335–2362.CrossRefGoogle Scholar
  76. Von Luxburg, U., Williamson, R. C., & Guyon, I. (2012). Clustering: Science or art? JMLR, Workshop and Conference Proceedings, 27, 65–79.Google Scholar
  77. VV. AA. (2013). Integration in biology: Philosophical perspectives on the dynamics of interdisciplinarity. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 44, 461–562.CrossRefGoogle Scholar
  78. Weddell, N., et al. (2015). Whole genomes redefine the mutational landscape of pancreatic cancer. Nature, 518(26), 495–501.CrossRefGoogle Scholar
  79. Weinberg, R. A. (2014). Coming full circle—From endless complexity to simplicity and back again. Cell, 57, 267–271.CrossRefGoogle Scholar
  80. Wimsatt, W. (2007). Re-engineering philosophy for limited beings. Piecewise approximation to reality. Cambridge: Harvard University Press.Google Scholar
  81. Xue, S., Qiao, J., Pu, F., Cameron, M., & Yang, J. (2013). Design of a novel class of protein-based magnetic resonance imaging contrast agents for the molecular imaging of cancer biomarkers. Wiley interdisciplinary reviews Nanomedicine and nanobiotechnology, 5(2), 163–179.  https://doi.org/10.1002/wnan.1205.CrossRefGoogle Scholar
  82. Zhang, X. D. D. (2015). Precision medicine, personalized medicine, omics and big data: Concepts and relationships. Journal of Pharmacogenomics and Pharmacoproteomics, 6(2).Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Dipartimento di Scienze Biomediche e Chirurgico SpecialisticheUniversità di FerraraFerraraItaly
  2. 2.Department of Philosophy and CommunicationUniversity of BolognaBolognaItaly

Personalised recommendations