Advertisement

Stabilization of phenomenon and meaning

On the London & London episode as a historical case in philosophy of science
  • Jan PottersEmail author
Paper in History and Philosophy of Science
  • 32 Downloads

Abstract

In recent years, the use of historical cases in philosophy of science has become a proper topic of reflection. In this article I will contribute to this research by means of a discussion of one very famous example of case-based philosophy of science, namely the debate on the London & London model of superconductivity between Cartwright, Suárez and Shomar on the one hand, and French, Ladyman, Bueno and Da Costa on the other. This debate has been going on for years, without any satisfactory resolution. I will argue here that this is because both sides impose on the historical case a particular philosophical conception of scientific representation that does not do justice to the historical facts. Both sides assume, more specifically, that the case concerns the discovery of a representational connection between a given experimental insight – the Meissner effect – and the diamagnetic meaning of London and London’s new equations of superconductivity. I will show, however, that at the time of the Londons’ publication, neither the experimental insight nor the meaning of the new equations was established: both were open for discussion and they were stabilized only later. On the basis of this historical discussion, I will then propose an alternative approach to the case study: the case should not be seen as a site of confrontation between pre-existing philosophical accounts, but rather as a way to historically elaborate and develop philosophical concepts. I will then show how approaching the historical episode in this way suggests an alternative approach to the philosophical study of representation, according to which it involves the establishment, over time, of a stable connection between constellations of different elements that, through discussion and engagement with alternative views and approaches, come to constitute phenomenon and meaning.

Keywords

Scientific representation London & London model Models and theories History and philosophy of science 

Notes

Acknowledgements

The author would like to thank Bert Leuridan, Mieke Boon, Brandon Boesch, Laura Georgescu, and the audiences at the OZSW Graduate Conference in Theoretical Philosophy 2016 (University of Twente), the GRAT Workshop 2016 (University of Antwerp), and the SPSP Conference 2016 (Rowan University).

The author would like to acknowledge the Research Foundation – Flanders (FWO) as funding institution.

References

  1. Arabatzis, T., & Schickore, J. (2012). Ways of integrating history and philosophy of science. Perspectives on Science, 20(4), 395–408.CrossRefGoogle Scholar
  2. Bailer-Jones, D. (2009). Scientific models in philosophy of science. University of Pittsburgh Press.Google Scholar
  3. Becker, R., Sauter, F., Heller, G. (1933). Uber die Stromverteiling einer Supraleitenden Kugel. Zeitschrift für Physik, 85(11), 772–787.CrossRefGoogle Scholar
  4. Bogen, J., & Woodward, J. (1988). Saving the phenomena. The Philosophical Review, XCVII(3), 305–352.Google Scholar
  5. Braunbek, W. (1934). Die Ausbreiting elektromagnetischer Wellen in einem Supraleiter. Zeitschrift für Physik, 87(7), 470–483.CrossRefGoogle Scholar
  6. Bueno, O., & French, S. (2011). How theories represent. British Journal for Philosophy of Science, 62(4), 857–894.CrossRefGoogle Scholar
  7. Bueno, O., French, S., Ladyman, J. (2002). On representing the relationship between the mathematical and the empirical. Philosophy of Science, 69, 497–518.CrossRefGoogle Scholar
  8. Bueno, O., French, S., Ladyman, J. (2012a). Models and structures: phenomenological and partial. Studies in History and Philosophy of Modern Physics, 43, 43–46.CrossRefGoogle Scholar
  9. Bueno, O., French, S., Ladyman, J. (2012b). Empirical factors and structure transference: returning to the London account. Studies in History and Philosophy of Modern Physics, 43, 95–104.CrossRefGoogle Scholar
  10. Burian, R.M. (2001). The dilemma of case studies resolved: the virtues of using case studies in the history and philosophy of science. Perspectives on Science, 9(4), 383–404.CrossRefGoogle Scholar
  11. Burian, R.M. (2002). Comments on the precarious relationship between history and philosophy of science. Perspectives on Science, 10(4), 398–407.CrossRefGoogle Scholar
  12. Cartwright, N., & Suárez, M. (2008). Theories: tools versus models. Studies in History and Philosophy of Modern Physics, 39, 62–81.CrossRefGoogle Scholar
  13. Cartwright, N., Shomar, T., Suárez, M. (1995). The tool box of science: tools for the building of models with a superconductivity example. Poznán Studies in the Philosophy of the Sciences and the Humanities, 44, 137–149.Google Scholar
  14. Casimir, H. (1977). Superconductivity and superfluidity. In Mehra, J. (Ed.) The physicist’s conception of nature. Springer.Google Scholar
  15. Chandrasekhar, B.S. (1969). Early experiments and phenomenological theories. In Parks, R. (Ed.) Superconductivity, Vol. 1. Marcel Dekker, Inc.Google Scholar
  16. Chang, H. (2012). Beyond case-studies: history as philosophy. In: (Mauskopf and Schmaltz 2012).Google Scholar
  17. Da Costa, N., & French, S. (2000). Models, theories, and structures: thirty years on. Philosophy of Science, 57, 116–127.CrossRefGoogle Scholar
  18. Dahl, P.F. (1992). Superconductivity: its historical roots and development from mercury to the ceramic oxides. American Institute of Physics.Google Scholar
  19. Essén, H., & Fiolhais, M.C.N. (2012). Meissner effect, diamagnetism, and classical physics – a review. American Journal of Physics, 80, 164–169.CrossRefGoogle Scholar
  20. Feest, U. (2011). What exactly is stabilized when phenomena are stabilized? Synthese, 182, 57–71.CrossRefGoogle Scholar
  21. Feynman, R. (1964). The Feynman lectures on physics volume II: mainly electromagnetism and matter. Adison-Wesley.Google Scholar
  22. French, S. (1999). The phenomenological approach to physics. Studies in History and Philosophy of Modern Physics, 30, 267–281.CrossRefGoogle Scholar
  23. French, S., & Ladyman, J. (1997). Superconductivity and structures: revisiting the London account. Studies in History and Philosophy of Modern Physics, 28(3), 363–393.CrossRefGoogle Scholar
  24. French, S., & Ladyman, J. (1999). Reinflating the semantic approach. International Studies in the Philosophy of Science, 13, 103–121.CrossRefGoogle Scholar
  25. French, S. (2010). Keeping quiet on the ontology of models. Synthese, 172(2), 231–249.CrossRefGoogle Scholar
  26. Gavroglu, K. (1995). Fritz London: a scientific biography. Cambridge University Press.Google Scholar
  27. Gavroglu, K., & Goudaroulis, Y. (1989). Methodological aspects of the development of low temperature physics 1881–1956: concepts out of context(s). Kluwer Academic Publishers.Google Scholar
  28. Gorter, C. (1933a). Some remarks on the thermodynamics of supraconductivity. Archives du Musèe Teyler, 7, 378–386.Google Scholar
  29. Gorter, C. (1933b). Theory of supraconductivity. Nature, 132, 931.CrossRefGoogle Scholar
  30. Gorter, C.J. (1964). Superconductivity until 1940 in Leiden and as seen from there. Reviews of Modern Physics, 36(1), 3–7.CrossRefGoogle Scholar
  31. Gorter, C., & Casimir, H. (1934). On supraconductivity I. Physica, 1, 306–320.CrossRefGoogle Scholar
  32. Hoddeson, L.H., & Baym, G. (1980). The development of the quantum mechanical electron theory of metals: 1900-28. Proceedings of the Royal Society of London A, 371 (1744), 8–23.CrossRefGoogle Scholar
  33. Hoddeson, L.H., Baym, G., Eckert, M. (1987). The development of the quantum mechanical electron theory of metals: 1928–1933. Reviews of Modern Physics, 59(1), 287–327.CrossRefGoogle Scholar
  34. Kamerlingh Onnes, H. (1913). Commun. Kamerlingh Onnes Lab., Tech. Rep. 34b, Univ. Leiden.Google Scholar
  35. Kamerlingh Onnes, H., & Tuyn, W. (1924). Nouvelles expériences avec les supraconducteurs. In Institut international de physique Solvay, (Ed.) Conductibilité électrique des métaux et problèmes connexes: rapports et discussions du quatrième Conseil de physique tenu à Bruxelles du 24 au 29 avril 1924. Gauthier-Villars.Google Scholar
  36. Keesom, W.H., & Kok, J.A. (1934). Measurement of the latent heat of thallium connected with the transition, in a constant external magnetic field, from the supraconductive to the non-supraconductive state. Commun. Kamerlingh Onnes Lab., Tech. Rep. 203e, Univ. Leiden.Google Scholar
  37. Kinzel, K. (2015). Narrative and evidence. How can case studies from the history of science support claims in the philosophy of science? Studies in History and Philosophy of Science, 49, 48–57.CrossRefGoogle Scholar
  38. Kinzel, K. (2016). Pluralism in historiography: a case study of case studies. In (Sauer and Scholl 2016).Google Scholar
  39. Kittel, C. (2005). Introduction to solid state physics, 8th Edn. Wiley.Google Scholar
  40. Knuuttila, T., & Loetgers, A. (2016). Contrasting cases: the Lotka-Volterra model times three. In (Sauer and Scholl 2016).Google Scholar
  41. Ladyman, J. (2002). Understanding philosophy of science. Routledge.Google Scholar
  42. Landry, E. (2007). Shared structure need not be shared set-structure. Synthese, 158, 1–17.CrossRefGoogle Scholar
  43. Le Bihan, S. (2012). Defending the semantic view: what it takes. European Journal for Philosophy of Science, 2, 249–274.CrossRefGoogle Scholar
  44. Leggett, A.J. (1995). Superfluids and superconductors. In Brown, L., Pippard, B., Pais, A. (Eds.) Twentieth century physics, Vol. 2. CRC Press.Google Scholar
  45. London, H. (1934). Production of heat in supraconductors by alternating currents. Nature, 133, 497–498.CrossRefGoogle Scholar
  46. London, F. (1935). Macroscopical interpretation of supraconductivity. Proceedings of the Royal Society A, 152(875), 24–34.Google Scholar
  47. London, F. (1936). Electrodynamics of macroscopic fields in supraconductors. Nature, 137, 991–992.CrossRefGoogle Scholar
  48. London, F. (1937a). A new conception of supraconductivity. Nature, 140, 793–796, 834–836.CrossRefGoogle Scholar
  49. London, F. (1937b). Une conception nouvelle de la supra-conductibilité: conférences faites à l’Institut Poincaré, Paris. Hermann.Google Scholar
  50. London, F., & London, H. (1935a). The electromagnetic equations of the supraconductor. Proceedings of the Royal Society, A149, 71–88.Google Scholar
  51. London, F., & London, H. (1935b). Supraleitung und Diamagnetismus. Physica, 2(1), 341–354.CrossRefGoogle Scholar
  52. Lorentz, H.A. (1924). Application de la théorie des électrons aux propriétés des métaux. In Institut international de physique Solvay (Ed.), Conductibilité électrique des métaux et problèmes connexes: rapports et discussions du quatrième Conseil de physique tenu à Bruxelles du 24 au 29 avril 1924. Gauthier-Villars.Google Scholar
  53. Lutz, S. (2017). What was the syntax-semantics debate in the philosophy of science about? Philosophy and Phenomenological Research, 95(2), 319–352.CrossRefGoogle Scholar
  54. Matricon, J., & Waysand, G. (2003). The cold wars: a history of superconductivity. Translated from French by Charles Glashausser. Rutgers University Press.Google Scholar
  55. Mauskopf, S., & Schmaltz, T. (2012). Integrating history and philosophy of science: problems and prospects. Springer.Google Scholar
  56. Meissner, W. (1935). The magnetic effects occurring on transition to the supraconducting state. Proceedings of the Royal Society A, 152(875), 13–15.Google Scholar
  57. Meissner, W., & Ochsenfeld, R. (1933). Ein neuer Effekt bei Eintritt der Supraleitfähigkeit. Die Naturwissenschaften, 21, 787–788. In Forrest, A. (1987). Meissner and Ochsenfeld Revisited. European Journal of Physics 4 (2): 117-120.CrossRefGoogle Scholar
  58. Mendelssohn, K., & Babbitt, J.D. (1935). Magnetic behaviour of supraconducting tin spheres. Proceedings of the Royal Society of London, 151(873), 316–333.Google Scholar
  59. McMullin, E. (1985). Galilean idealizations. Studies in History and Philosophy of Science, 16(3), 247–273.CrossRefGoogle Scholar
  60. Monaldi, D. (2017). Fritz London and the scale of quantum mechanisms. Studies in History and Philosophy of Modern Physics, 60, 35–45.CrossRefGoogle Scholar
  61. Morgan, M., & Morrison, M. (1999). Models as mediators: perspectives on natural and social science. Cambridge University Press.Google Scholar
  62. Morrison, M. (2008). Models as representational structures. In Hartmann, S. et al. (Eds.) Nancy Cartwright’s philosophy of science. Routledge.Google Scholar
  63. Pietsch, W. (2016). Two modes of reasoning with case studies. In (Sauer and Scholl 2016).Google Scholar
  64. Pitt, J.C. (2001). The dilemma of case studies: towards a heraclitian philosophy of science. Perspectives on Science, 9(4), 373–382.CrossRefGoogle Scholar
  65. Redhead, M. (1980). Models in physics. The British Journal for the Philosophy of Science, 31(2), 145–163.CrossRefGoogle Scholar
  66. Rjabinin, J.N., & Schubnikow, L. (1935). Über die Abhängigkeit der magnetischen Induktion des supraleitenden Blei vom Feld. Physikalischer Zeitschrift der Sowjet Union, 6, 557–568.Google Scholar
  67. Sauer, T., & Scholl, R. (2016). The philosophy of historical case studies. Springer.Google Scholar
  68. Schickore, J. (2011). More thoughts on HPS: another 20 years later. Perspectives on Science, 19(4), 453–481.CrossRefGoogle Scholar
  69. Schindler, S. (2007). Rehabilitating theory: refusal of the ‘bottom-up’ construction of scientific phenomena. Studies in History and Philosophy of Science, 38, 160–184.CrossRefGoogle Scholar
  70. Schmalian, J. (2011). Failed theories of superconductivity. In Cooper, L.N., Feldman, D, Schmalian, J (Eds.) 50 Years: World Scientific Publishing Co.Google Scholar
  71. Scholl, R, & Räz, T. (2016). Towards a methodology for integrated history and philosophy of science. In (Sauer and Scholl 2016).Google Scholar
  72. Smith, H.G., & Wilhelm, J.O. (1935). Superconductivity. Reviews of Modern Physics, 7(4), 237–271.CrossRefGoogle Scholar
  73. Suárez, M. (1999). The role of models in the application of scientific theories: epistemological implications. In (Morgan and Morrison 1999).Google Scholar
  74. Tinkham, M. (1996). Introduction to superconductivity, 2nd Edn. McGraw-Hill.Google Scholar
  75. Wilson, A.H. (1936). Superconductivity and the theory of metals. Reports on Prgoress in Physics, 3, 262–271.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Center for Philosophical Psychology, Department of PhilosophyUniversity of AntwerpAntwerpenBelgium

Personalised recommendations