Are computer simulations experiments? And if not, how are they related to each other?

Original Paper in Philosophy of Science

Abstract

Computer simulations and experiments share many important features. One way of explaining the similarities is to say that computer simulations just are experiments. This claim is quite popular in the literature. The aim of this paper is to argue against the claim and to develop an alternative explanation of why computer simulations resemble experiments. To this purpose, experiment is characterized in terms of an intervention on a system and of the observation of the reaction. Thus, if computer simulations are experiments, either the computer hardware or the target system must be intervened on and observed. I argue against the first option using the non-observation argument, among others. The second option is excluded by e.g. the over-control argument, which stresses epistemological differences between experiments and simulations. To account for the similarities between experiments and computer simulations, I propose to say that computer simulations can model possible experiments and do in fact often do so.

Keywords

Methods Computer simulation Experiment Intervention Experimental control Observation Modeling 

Notes

Acknowledgments

Thanks to Christoph Baumberger and Trude Hirsch Hadorn for extremely useful comments on an earlier version of this manuscript. I’m also very grateful for detailed and helpful comments and criticisms by two anonymous referees. One of them provided extensive, constructive and extremely helpful comments even about a revised version of this paper – thanks a lot for this!

References

  1. Adam, M. (2002). Theoriebeladenheit und Objektivität. Zur Rolle von Beobachtungen in den Naturwissenschaften. Frankfurt am Main und London: Ontos.CrossRefGoogle Scholar
  2. Arnold, E. (2013). Experiments and simulations: Do they fuse? In Durán, J.M., & Arnold, E. (Eds.) Computer simulations and the changing face of scientific experimentation (pp. 46–75). Newcastle upon Tyne: Cambridge Scholars Publishing.Google Scholar
  3. Balzer, W. (1997). Die Wissenschaft und ihre Methoden. Freiburg und München: Karl Alber.Google Scholar
  4. Barberousse, A., Franceschelli, S., & Imbert, C. (2009). Computer simulations as experiments. Synthese, 169, 557–574.CrossRefGoogle Scholar
  5. Barker-Plummer, D. (2016). Turing machines. In Zalta, E.N. (Ed.), The Stanford encyclopedia of philosophy. Winter 2016 edn, Metaphysics Research Lab, Stanford University.Google Scholar
  6. Baumberger, C. (2011). Understanding and its relation to knowledge. In Löffler, C.J.W. (Ed.) Epistemology: contexts, values, disagreement. Papers of the 34th international Wittgenstein symposium (pp. 16–18). Austrian Ludwig Wittgenstein Society.Google Scholar
  7. Beisbart, C. (2012). How can computer simulations produce new knowledge? European Journal for Philosophy of Science, 2(2012), 395–434.Google Scholar
  8. Beisbart, C. (2014). Are we Sims? How computer simulations represent and what this means for the simulation argument. The Monist, 97/3, 399–417.CrossRefGoogle Scholar
  9. Beisbart, C., & Norton, J.D. (2012). Why Monte Carlo simulations are inferences and not experiments. International Studies in the Philosophy of Science, 26, 403–422.CrossRefGoogle Scholar
  10. Bertschinger, E. (1998). Simulations of structure formation in the Universe. Annual Review of Astronomy and Astrophysics, 36, 599–654.CrossRefGoogle Scholar
  11. Binder, K., & Heermann, D. (2010). Monte Carlo simulation in statistical physics: An introduction, graduate texts in physics. Berlin: Springer Verlag.CrossRefGoogle Scholar
  12. Bogen, J. (2010). Theory and observation in science. In Zalta, E.N. (Ed.), The stanford encyclopedia of philosophy. Spring 2010 edn. http://plato.stanford.edu/archives/spr2010/entries/science-theory-observation/.Google Scholar
  13. Brown, J.R., & Fehige, Y. (2017). Thought experiments. In Zalta, E.N. (Ed.), The stanford encyclopedia of philosophy. Summer 2017 edn.Google Scholar
  14. Carnap, R. (1962). Logical foundations of probability, 2nd edn. Chicago: University of Chicago Press.Google Scholar
  15. Casti, J.L. (1997). Would-be worlds. How simulation is changing the frontiers of science. New York: Wiley.Google Scholar
  16. Dolag, K., Borgani, S., Schindler, S., Diaferio, A., & Bykov, A.M. (2008). Simulation techniques for cosmological simulations. Space Science Reviews, 134, 229–268. arXiv:0801.1023v1.CrossRefGoogle Scholar
  17. Dowling, D. (1999). Experimenting on theories. Science in Context, 12/2, 261–273.Google Scholar
  18. Duhem, P.M.M. (1954). The aim and structure of physical theory, Princeton science library. Princeton, NJ: Princeton University Press.Google Scholar
  19. Durán, J.M. (2013). The use of the materiality argument in the literature on computer simulations. In Durán, J.M., & Arnold, E. (Eds.), Computer simulations and the changing face of scientific experimentation (pp. 76–98). Newcastle upon Tyne: Cambridge Scholars Publishing.Google Scholar
  20. Efstathiou, G., Davis, M., White, S.D.M., & Frenk, C.S. (1985). Numerical techniques for large cosmological N-body simulations. Ap J Suppl, 57, 241–260.CrossRefGoogle Scholar
  21. Falkenburg, B. (2007). Particle metaphysics. A critical account of subatomic reality. Heidelberg: Springer.Google Scholar
  22. Franklin, A. (2010). Experiment in physics. In Zalta, E.N. (Ed.), The Stanford encyclopedia of philosophy. Spring 2010 edn.Google Scholar
  23. Frigg, R.P., & Reiss, J. (2009). The philosophy of simulation: Hot mew issues or same old stew? Synthese, 169, 593–613.Google Scholar
  24. Fritzson, P. (2004). Principles of object-oriented modeling and simulation with Modelica 2.1. IEEE Press.Google Scholar
  25. Giere, R.N. (2004). How models are used to represent. Philosophy of Science, 71, 742–752.CrossRefGoogle Scholar
  26. Giere, R.N. (2009). Is computer simulation changing the face of experimentation? Philosophical Studies, 143(1), 59–62.Google Scholar
  27. Gillespie, D.T. (1976). A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics, 22, 403–434.CrossRefGoogle Scholar
  28. Goodman, N. (1968). Languages of art: An approach to a theory of symbols. Indianapolis: Bobbs-Merrill.Google Scholar
  29. Gramelsberger, G. (2010). Computerexperimente. Zum Wandel der Wissenschaft im Zeitalter des Computers. Transcript, Bielefeld.Google Scholar
  30. Guala, F. (2002). Models, simulations, and experiments. In Magnani, L., & Nersessian, N. (Eds.), Model-based reasoning: science, technology, values (pp. 59–74). New York: Kluwer.CrossRefGoogle Scholar
  31. Guillemot, H. (2010). Connections between simulations and observation in climate computer modeling. scientist’s practices and bottom-up epistemology lessons. Studies In History and Philosophy of Science Part B: Studies In History and Philosophy of Modern Physics, 41, 242–252. Special Issue: Modelling and simulation in the atmospheric and climate sciences.CrossRefGoogle Scholar
  32. Haasl, R.J., & Payseur, B.A. (2011). Multi-locus inference of population structure: a comparison between single nucleotide polymorphisms and microsatellites. Heredity, 106, 158–171.CrossRefGoogle Scholar
  33. Hacking, I. (1983). Representing and intervening. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  34. Hasty, J., McMillen, D., Isaacs, F., & Collins, J.J. (2001). Computational studies of gene regulatory networks: In numero molecular biology. Nature Reviews Genetics, 2, 268–279.CrossRefGoogle Scholar
  35. Heidelberger, M. (2005). Experimentation and instrumentation. In Borchert, D. (Ed.), Encyclopedia of philosophy. Appendix (pp. 12–20). New York: Macmillan.Google Scholar
  36. Hughes, R.I.G. (1997). Models and representation. Philosophy of Science (Proceedings), 64, S325–S336.CrossRefGoogle Scholar
  37. Hughes, R.I.G. (1999). The Ising model, computer simulation, and universal physics. In Morgan, M.S., & Morrison, M. (Eds.), Models as mediators. Perspectives on natural and social sciences (pp. 97–145). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  38. Humphreys, P. (1990). Computer simulations. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, 1990, 497–506.Google Scholar
  39. Humphreys, P. (1994). Numerical experimentation. In Humphreys, P. (Ed.), Patrick Suppes. Scientific philosopher (Vol. 2, pp. 103–118). Dordrecht: Kluwer.Google Scholar
  40. Humphreys, P. (2004). Extending ourselves: Computational science, empiricism, and scientific method. New York: Oxford University Press.CrossRefGoogle Scholar
  41. Humphreys, P.W. (2013). What are data about? In Durán, J.M., & Arnold, E. (Eds.) Computer simulations and the changing face of scientific experimentation (pp. 12–28). Newcastle upon Tyne: Cambridge Scholars Publishing.Google Scholar
  42. Hüttemann, A. (2000). Natur und Labor. Über die Grenzen der Gültigkeit von Naturgesetzen. Philosophia Naturalis, 37, 269–285.Google Scholar
  43. Imbert, C. (2017). Computer simulations and computational models in science. In Magnani, L. & Bertolotti, T. (Eds.) Springer handbook of model-based science (Vol. 34, pp. 733–779), Cham, chapter: Springer.Google Scholar
  44. Janich, P. (1995). Experiment. In Mittelstraß, J. (Ed.), Enzyklopädie Philosophie und Wissenschaftstheorie. Band 1, Metzler, Stuttgart (pp. 621–622).Google Scholar
  45. Kant, I. (1998). Critique of pure reason. Cambridge: Cambridge University Press. translated by P. Guyer and A. W. Wood; Cambridge Edition of the Works of Kant.CrossRefGoogle Scholar
  46. Keller, E.F. (2003). Models, simulation, and computer experiments. In Radder, H. (Ed.), The philosophy of scientific experimentation (pp. 198–215). Pittsburgh: University of Pittsburgh Press.CrossRefGoogle Scholar
  47. Knorr-Cetina, K. (1981). The manufacture of knowledge: An essay on the constructivist and contextual nature of science. Pergamon international library of science, technology, engineering, and social studies, Pergamon Press.Google Scholar
  48. Kroes, P. (1989). Structural analogies between physical systems. British Journal for the Philosophy of Science, 40, 145–154.CrossRefGoogle Scholar
  49. Küppers, G., & Lenhard, J. (2005). Computersimulationen: Modellierungen 2. Ordnung. Journal for General Philosophy of Science, 36(2), 305–329.CrossRefGoogle Scholar
  50. Lim, S., McKee, J.L., Woloszyn, L., Amit, Y., Feedman, D.J., Sheinberg, D.L., & Brunel, N. (2015). Inferring learning rules from distributions of firing rates in cortical neurons. Nature Neuroscience, 18, 1804–1810.CrossRefGoogle Scholar
  51. Mainzer, K. (1995). Computer – neue Flügel des Geistes? Die Evolution computergestützter Technik, Wissenschaft, Kultur und Philosophie, 2nd edn. Berlin, New York: de Gruyter Verlag.Google Scholar
  52. Metropolis, N., & Ulam, S. (1949). The Monte Carlo method. Journal of the American Statistical Association, 44(247), 335–341.CrossRefGoogle Scholar
  53. Michelson, A.A. (1881). The relative motion of the earth and the luminiferous ether. American Journal of Science, 22, 120–129.CrossRefGoogle Scholar
  54. Michelson, A.A., & Morley, E.W. (1887). On the relative motion of the earth and the luminiferous ether. American Journal of Science, 34, 333–345.CrossRefGoogle Scholar
  55. Morgan, M.S. (2002). Model experiments and models in experiments. In Magnani, L., & Nersessian, N. (Eds.), Model-based reasoning: science, technology, values (pp. 41–58). New York: Kluwer.CrossRefGoogle Scholar
  56. Morgan, M.S. (2003). Experimentation without material intervention: Model experiments, virtual experiments, and virtually experiments. In Radder, H. (Ed.), The philosophy of scientific experimentation (pp. 216–235). Pittsburgh: University of Pittsburgh Press.CrossRefGoogle Scholar
  57. Morgan, M.S. (2005). Experiments versus models: New phenomena, inference and surprise. Journal of Economic Methodology, 12(2), 317–329.CrossRefGoogle Scholar
  58. Morrison, M. (1998). Experiment. In Craig, E. (Ed.) Routledge encyclopedia of philosophy (Vol. III, pp. 514–518). London: Routledge and Kegan.Google Scholar
  59. Morrison, M. (2009). Models, measurement and computer simulation: The changing face of experimentation. Philosophical Studies, 143, 33–57.CrossRefGoogle Scholar
  60. Nagel, T. (1986). The view from nowhere. Oxford: Oxford University Press.Google Scholar
  61. Naumova, E.N., Gorski, J., & Naumov, Y.N. (2008). Simulation studies for a multistage dynamic process of immune memory response to influenza: Experiment in silico. Annales Zoologici Fennici, 45, 369–384.CrossRefGoogle Scholar
  62. Norton, J.D. (1996). Are thought experiments just what you thought? Canadian Journal of Philosophy, 26, 333–366.Google Scholar
  63. Norton, S.D., & Suppe, F. (2001). Why atmospheric modeling is good science. In Edwards, P., & Miller, C. (Eds.), Changing the atmosphere (pp. 67–106). Cambridge, MA: MIT Press.Google Scholar
  64. Parker, W.S. (2008). Franklin, Holmes, and the epistemology of computer simulation. International Studies in the Philosophy of Science, 22(2), 165–183.CrossRefGoogle Scholar
  65. Parker, W.S. (2009). Does matter really matter? Computer simulations, experiments, and materiality. Synthese, 169(3), 483–496.CrossRefGoogle Scholar
  66. Parker, W.S. (2010). An instrument for what? Digital computers, simulation and scientific practice. Spontaneous Generations, 4(1), 39–44.Google Scholar
  67. Peschard, I. (forthcoming). Is simulation a substitute for experimentation? In Vaienti, S., & Livet, P. (Eds.) Simulations and networks. Aix-Marseille: Presses Universitaires d’Aix-Marseille. Here quoted after the preprint http://d30056166.purehost.com/Is_simulation_an_epistemic%20_substitute.pdf.
  68. Press, W.H., Teukolsky, S.A., Vetterling, W.T., & Flannery, B.P. (2007). Numerical recipes. The art of scientific computing, 3rd edn. New York: Cambridge University Press.Google Scholar
  69. Radder, H. (2009). The philosophy of scientific experimentation: A review. Automatic Experimentation 1. open access; http://www.aejournal.net/content/1/1/2.
  70. Radder, H. (Ed.) (2003). The philosophy of scientific experimentation. Pittsburgh: University of Pittsburgh Press.Google Scholar
  71. Rechenberg, P. (2000). Was ist Informatik? Eine allgemeinverständliche Einführung, 3rd edn. München: Hanser.Google Scholar
  72. Rheinberger, H.J. (1997). Toward a history of epistemic things: Synthesizing proteins in the test tube. Writing science, Stanford University Press.Google Scholar
  73. Rohrlich, F. (1990). Computer simulation in the physical sciences. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, 1990, 507–518.Google Scholar
  74. Scholz, O. R. (2004). Bild, Darstellung, Zeichen. Philosophische Theorien bildlicher Darstellung, 2nd edn. Frankfurt am Main: Vittorio Klostermann.Google Scholar
  75. Shapere, D. (1982). The concept of observation in science and philosophy. Philosophy of Science, 49(4), 485–525.CrossRefGoogle Scholar
  76. Skaf, R.E., & Imbert, C. (2013). Unfolding in the empirical sciences: experiments, thought experiments and computer simulations. Synthese, 190(16), 3451–3474.CrossRefGoogle Scholar
  77. Stöckler, M. (2000). On modeling and simulations as instruments for the study of complex systems. In Carrier, M., Massey, G.J., & Ruetsche, L. (Eds.), Science at the century’s end: Philosophical questions on the progress and limits of science (pp. 355–373). Pittsburgh, PA: University of Pittsburgh Press.CrossRefGoogle Scholar
  78. Suárez, M. (2003). Scientific representation: Against similarity and isomorphism. International Studies in the Philosophy of Science, 17, 225–244.CrossRefGoogle Scholar
  79. Suárez, M. (2004). An inferential conception of scientific representation. Philosophy of Science, 71, 767–779.CrossRefGoogle Scholar
  80. Sugden, R. (Ed.) (2005). Experiment, theory, world: A symposium on the role of experiments in economics, Vol. 12/2. London: Routledge. Special issue of Journal of Economic Methodology.Google Scholar
  81. Tiles, J.E. (1993). Experiment as intervention. British Journal for the Philosophy of Science, 44(3), 463–475.CrossRefGoogle Scholar
  82. Trenholme, R. (1994). Analog simulation. Philosophy of Science, 61(1), 115–131.CrossRefGoogle Scholar
  83. Turing, A. (1937). On computable numbers, with an application to the entscheidungsproblem, Proceedings of the London mathematical society (Vol. s2–42, no. 1).Google Scholar
  84. Weber, M. (2005). Philosophy of experimental biology. Cambridge: Cambridge University Press.Google Scholar
  85. Weisberg, M. (2007). Who is a modeler? British Journal for Philosophy of Science, 58, 207–233.Google Scholar
  86. Winsberg, E. (1999). Sanctioning models. The epistemology of simulation. Science in Context, 12, 275–292.CrossRefGoogle Scholar
  87. Winsberg, E. (2003). Simulated experiments: Methodology for a virtual world. Philosophy of Science, 70, 105–125.CrossRefGoogle Scholar
  88. Winsberg, E. (2009a). Computer simulation and the philosophy of science. Philosophy Compass, 4/5, 835–845.CrossRefGoogle Scholar
  89. Winsberg, E. (2009b). A tale of two methods. here quoted from Winsberg (2010) Ch. 4 pp. 49–71.Google Scholar
  90. Winsberg, E. (2010). Science in the age of computer simulations. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  91. Zimmerman, D.J. (2003). Peer effects in academic outcomes: Evidence from a natural experiment. The Review of Economics and Statistics, 85(1), 9–23.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Institut für PhilosophieUniversität BernBern 9Switzerland

Personalised recommendations