Indian Journal of Surgical Oncology

, Volume 10, Supplement 1, pp 3–11 | Cite as

History of Peritoneal Surface Malignancy Treatment in Japan

  • Yutaka YonemuraEmail author
  • Shouzou Sako
  • Satoshi Wakama
  • Haruaki Ishibashi
  • Akiyoshi Mizumoto
  • Nobuyuki Takao
  • Masumi Ichinose
  • Kousuke Noguchi
  • Yang Liu
  • Syunsuke Motoi
  • Keizou Taniguchi
  • Sachio Fushida
Review Article


In this review, Japanese experience of cytoreductive surgery and perioperative chemotherapy is described. The new concept of peritoneal metastasis (PM) type, i.e., trans-mesothelial, trans-lymphatic, and superficial growing metastasis type was proposed in 2012. Surgeons should perform peritonectomy according to the type of PM. Since 1980, Japanese surgical oncologists have been spearheading the use of cytoreductive surgery (CRS) plus hyperthermic intraperitoneal chemoperfusion (HIPEC) as treatment for PM from gastric cancer. Two RCTs were conducted to verify the effect of HIPEC for the prophylaxis of peritoneal recurrence after curative resection of advanced gastric cancer. These two studies indicated that HIPEC is effective in preventing peritoneal recurrence of gastric cancer with serosal invasion. In 2002, intraperitoneal chemotherapy using taxans was developed for the treatment of PM from gastric cancer and led to the development of neoadjuvant intraperitoneal/systemic chemotherapy (NIPS), which was reported in 2006. In 2009, extensive intra-operative peritoneal lavage (EIPL) was developed, and contributed to the remarkable improvement in survival of patients with positive lavage cytology as demonstrated by prospective randomized clinical trials. In 2017, the Peritoneal Surface Oncology Group International proposed the value of complete cytoreduction and peritoneal cancer index cut-off as independent prognostic factors after CRS for gastric cancer with PM. Founded in 2016, the Japanese/Asian School of Peritoneal Surface Oncology (JASPSO) trains beginners to perform CRS and HIPEC safely. Sixteen students have already graduated from JASPSO and started to perform the treatment in their home countries.


Cytoreductive surgery Perioperative chemotherapy Peritoneal metastasis 



  1. 1.
    Chu DZ, Lang NP, Thompson C et al (1989) Peritoneal carcinomatosis in nongynecological malignancy. Cancer 63:364–367CrossRefGoogle Scholar
  2. 2.
    Jayne DG, Fook S, Loi C, Seow-Choen F (2002) Peritoneal carcinomatosis from colorectal cancer. Brit J Surg 89:1545–1550CrossRefGoogle Scholar
  3. 3.
    Spratt JS, Adcock RA, Muskovin M et al (1980) Clinical delivery system for intraperitoneal hyperthermic chemotherapy. Cancer Res 40(2):256–260Google Scholar
  4. 4.
    Alexander HR, Fraker DL (1996) Treatment of peritoneal carcinomatosis by continuous hyperthermic peritoneal perfusion with cisplatin. Cancer Treat Res 81:41–50CrossRefGoogle Scholar
  5. 5.
    Franko J, Shi Q, Goldman CD et al (2012) Treatment of colorectal carcinomatosis with systemic chemotherapy: a pooled analysis of north central cancer treatment group phase III trial N9741 and N9841. Cancer Res 30(3):263–267. Google Scholar
  6. 6.
    Sugarbaker PH (1995) Peritonectomy procedures. Ann Surg 221(1):29–42CrossRefGoogle Scholar
  7. 7.
    Verwaal VJ, Bruin A, Boot H et al (2008) 8-year follow-up of randomized trial: cytoreduction and hyperthermic intraperitoneal chemotherapy in patients with peritoneal carcinomatosis of colorectal cancer. Ann Surg Oncol 15(9):2426–2432. CrossRefGoogle Scholar
  8. 8.
    Coccolini F, Catena F, Glehen O, Yonemura Y, Sugarbaker PH, Piso P et al (2015) Complete versus incomplete cytoreduction in peritoneal carcinosis from gastric cancer, with consideration to PCI cut-off. Systemic review and meta-analysis. EJSO.
  9. 9.
    Glehen O, Gilly FN, Arvieux C et al (2010) Peritoneal carcinomatosis from gastric cancer A muti-institutional study of 159 patients treated by cytoreductive surgery combined with perioperative intraperitoneal chemotherapy. Ann Surg Oncol 17(9):2370–2377. CrossRefGoogle Scholar
  10. 10.
    Yang XJ, Huang CQ, Suo T, Mei LJ, Yang GL, Cheng FL, Zhou YF, Xiong B, Yonemura Y, Li Y (2011) Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy improves survival of patients with peritoneal carcinomatosis from gastric cancer: final results of a phase III randomized clinical trial. Ann Surg Oncol 18:1575–1581CrossRefGoogle Scholar
  11. 11.
    Yonemura Y (2018) Peritoneal cancer index and prognosis. In: Yonemura Y (ed) Comprehensive treatment for peritoneal surface malignancy with an intent of cure. NPO to Support Peritoneal Surface Malignancy, pp 3–55Google Scholar
  12. 12.
    Jayne D (2007) Molecular biology of peritoneal carcinomatosis. In: Ceelen WP (ed) Cancer treatment and research. Springer, pp 21–31Google Scholar
  13. 13.
    Yonemura Y, Canbay E, Liu Y et al (2013) Trans-lymphatic metastasis in peritoneal dissemination. J Gastroint Dig Syst S12.
  14. 14.
    Sugarbaker PH (1997) Observation concerning cancer spread within the peritoneal cavity and concepts supporting an ordered pathophysiology. In: Sugarbaker PH (ed) Peritoneal carcinomatosis: a multidisciplinary approach. Kluwar Academic Publisher, Boston, pp 79–100Google Scholar
  15. 15.
    Yonemura Y (2012) Trans-lymphatic metastasis. In: Yonemura Y (ed) Atlas and principles of peritonectomy for peritoneal surface malignancy, Published by NPO to Support Peritoneal Surface Malignancy, pp 188–206Google Scholar
  16. 16.
    Bettendorf U (1978) Lymph flow mechanism of the subperitoneal diaphragmatic lymphatics. Lymphology 11(3):111–116Google Scholar
  17. 17.
    Tsujimoto H, Takhashi T, Hagiwara A et al (1995) Site-specific implantation in the milky spots of malignant cells in peritoneal dissemination: immunohistochemical observation in mice inoculated intraperitoneally with bromodeoxyuridine-labeled cells. Br J Cancer 71:468–472CrossRefGoogle Scholar
  18. 18.
    Shimotsuma M, Takahashi T, Kawata M, Dux K (1991) Cellular subset of the milky spots in the human greater omentum. Cell Tissue Res 264:599–601CrossRefGoogle Scholar
  19. 19.
    Diaz-Flores L, Gutierrez R, Garcia MP et al (2014) CD34+ stromal cells/fibroblastis/fibrocytes/telocyted as a tissue reserve and principal source of mesenchymal cells. Location, morphology, function and role in pathology. Histol Histopathol 29:831–870Google Scholar
  20. 20.
    Koga S, Shimizu N, Maeta M, Hamazoe R, Izumi A (1983) Application of heat combined with antineoplastic agent administration in the treatment if cancer (with special reference to malignancy of the digestive system). Gan to Kagaku Ryoho 10:358–365Google Scholar
  21. 21.
    Fujimura T, Yonemura Y, Fushida S, Urade M, Takegawa S, Kamata T, Sugiyama K, Hasegawa H, Katayama K, Miwa K, Miyazaki I (1990) Continuous hyperthermic intraperitoneal perfusion for the treatment of peritoneal dissemination in gastric cancer and subsequent second-look operation. Cancer 65(1):65–71CrossRefGoogle Scholar
  22. 22.
    Yamaguchi A, Tsukioka Y, Fushida S, Kurosaka Y, Kanno M, Yonemura Y, Miwa K, Miyazaki I (1992) Intraperitoneal hyperthermic treatment for peritoneal dissemination of colorectal cancer. Dis Colon Rectum 35(10):964–968CrossRefGoogle Scholar
  23. 23.
    Fujimoto S, Takahashi M, Mutou T et al (1996) Survival time and prevention of side effects of intraperitoneal perfusion with mitomycin C combined with surgery for patients with advanced gastric cancer. Cancer Treat Res 81:169–176CrossRefGoogle Scholar
  24. 24.
    Yonemura Y, Fujimura T, Fushida S, Takegawa S, Kamata T, Katayama K, Kosaka T, Yamaguchi A, Miwa K, Miyazaki I (1991) Hyperthermo-chemotherapy combined with cytoreductive surgery for the treatment of gastric cancer with peritoneal dissemination. World J Surg 15(4):530–535CrossRefGoogle Scholar
  25. 25.
    Fushida S, Furui N, Kinami S et al (2002) Pharmacologic study of intraperitoneal docetaxel in gastric cancer patients with peritoneal dissemination. Gan To Kgaku Ryoho 29(12):2164–2167 (in Japanese)Google Scholar
  26. 26.
    Yonemura Y, Bandou E, Sawa T, Yoshimitsu Y, Endou Y, Sasaki T, Sugarbaker PH (2006) Neoadjuvant treatment of gastric cancer with peritoneal dissemination. EJSO 32(6):661–665CrossRefGoogle Scholar
  27. 27.
    Yonemura Y, Endou Y, Sasaki T et al (2010) Surgical treatment for peritoneal carcinomatosis from gastric cancer. EJSO 36(12):1121–1138CrossRefGoogle Scholar
  28. 28.
    Yonemura Y, Canbay E, Li Y et al (2016) A comprehensive treatment for peritoneal metastases from gastric cancer with curative intent. Eur J Surg Oncol available in online.
  29. 29.
    Yonemura Y, Ayman E, Endou Y et al (2012) Effects of neoadjuvant intraperitoneal/systemic chemotherapy (bidirectional chemotherapy) for the treatment of patients with peritoneal metastasis from gastric cancer. Int J Surg Oncol 2012:148420. Google Scholar
  30. 30.
    Coccolini F, Catena F, Glehen O, Yonemura Y, Sugarbaker PH, Piso P, Ceresoli M, Montori G, Ansaloni L (2016) Effect of intraperitoneal chemotherapy and peritoneal lavage in positive peritoneal cytology in gastric cancer. Systematic review and meta-analysis. Eur J Surg Oncol 42(9):1261–1267. ReviewCrossRefGoogle Scholar
  31. 31.
    Valle M, Van der Speeten K, Garofalo A (2009) Laparoscopic hyperthermic intraperitoneal preoperative chemotherapy (HIPEC) in the management of refractory malignant ascites: a multi-institutional retrospective analysis in 52 patients. J Surg Oncol 100(4):331–334. CrossRefGoogle Scholar
  32. 32.
    Yonemura Y, Elnemr A, Endou Y, Ishibashi H, Mizumoto A, Miura M, Li Y (2012) Surgical results of patients with peritoneal carcinomatosis treated with cytoreductive surgery using a new technique named aqua dissection. Gastroenterol Res Pract 2012:521487. Google Scholar
  33. 33.
    Hong SH, Shin YR, Roh Y, Jeong EK, Song KY, Park CH et al (2013) Treatment outcomes of systemic chemotherapy for peritoneal carcinomatosis arising from gastric cancer with no measurable disease: retrospective analysis from a single center. Gastric Cancer 16:290–300. CrossRefGoogle Scholar
  34. 34.
    Koh JL, Yan TD, Glenn D, Morris DL (2009) Evaluation of preoperative computed tomography in estimating peritoneal cancer index in colorectal peritoneal carcinomatosis. Ann Surg Oncol 16:327–333. CrossRefGoogle Scholar
  35. 35.
    Pôfannenberg C, Knigstainer, Aschoff P, Oksűz MO, Zieker D, Beckers S et al (2009) (18) F-FDG-PET-CT to select patients with peritoneal carcinomatosis for cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. Ann Surg Oncol 16:1295–1303CrossRefGoogle Scholar
  36. 36.
    Thomas F, Ferron G, Gesson-Paute A, Hristova M, Lochon I, Chatelut E (2008) Increased tissue diffusion of oxaliplatin during laparoscopically assisted versus open heated intraoperative intraperitoneal chemotherapy. Ann Surg Oncol 15:3623–3624. CrossRefGoogle Scholar
  37. 37.
    Yonemura Y, Ishibashi H, Hirano M, Mizumoto A, Takeshita K, Noguchi K, Takao N, Ichinose M, Liu Y, Li Y (2017) Effects of neoadjuvant laparoscopic hyperthermic intraperitoneal chemotherapy and neoadjuvant intraperitoneal/systemic chemotherapy on peritoneal metastases from gastric cancer. Ann Surg Oncol 24(2):478–485. CrossRefGoogle Scholar
  38. 38.
    Canbay E, Mizumoto A, Ichinose M et al (2015) Outcome data of patients with peritoneal carcinomatosis from gastric cancer treated by a strategy of bidirectional chemotherapy prior to cytoreductive surgery and hyperthermic intraperitoneal chemotherapy in a single specialized center in Japan. Ann Surg Oncol 21(4):1147–1152CrossRefGoogle Scholar
  39. 39.
    Yonemura Y, Canbay E, Shintani H et al (2016) Treatment failure following complete cytoreductive surgery for peritoneal metastasis from colorectal cancer. Gan To Kagaku Ryoho 43(12):1435–1439Google Scholar
  40. 40.
    Jichlinski P, Forre M, Mizeret J et al (1997) Clinical evaluation of a method for detecting superficial transitional cell carcinoma of the bladder by light-induced fluorescence of protoporphyrin IX following topical application of 5-aminolevulinic acid: preliminary results. Lasers Surg Med 20:402–408CrossRefGoogle Scholar
  41. 41.
    Kaneko S. Photodynamic applications (PDD, PDT) using aminolevulinic acid in neurosurgery. In: Okura I, Tanaka TR (eds) Aminolevulinic acid. Science, technology and application. SBI ALA Promo Co., Ltd, pp 119–140Google Scholar
  42. 42.
    Rodoriguez L, Batle A, Di Verosa G et al (2006) Study of the mechanisms of uptake of 5-aminolevulinic acid derivatives by PEPT1 and PET2 transporters as a tool to improve photodynamic therapies of tumours. Int J Biochem Cell Biol 38:1530–1539CrossRefGoogle Scholar
  43. 43.
    Hino H, Murayama Y, Nakanishi M, Inoue K, Nakajima M, Otsuji E (2013) 5-aminolevulinic acid-mediated photodynamic therapy using light-emitting diodes of different wavelength in a mouse model of peritoneally disseminated gastric cancer. J Surg Res 185(1):119–126. CrossRefGoogle Scholar
  44. 44.
    Yonemura Y, Endo Y, Canbay E et al (2017) Photodynamic detection of peritoneal metastases using 5-aminolevulinic acid (ALA). Cancers (Basel) 9(3):E23. CrossRefGoogle Scholar
  45. 45.
    Hagiya Y, Furuhara H, Matsumoto K et al (2013 Sep) Expression levels of PEPT1 and ABCG2 play key roles in 5-aminolevulinic acid (ALA)-induced tumor specific protoporphyrin IX (PpIX) accumulation in bladder cancer. Photodiagn Photodyn Ther 10(3):288–295. CrossRefGoogle Scholar
  46. 46.
    Lőning M, Diddens H, Kűpker W et al (2004) Laparoscopic fluorescent detection of ovarian carcinoma metastasis using 5-aminolevulinic acid-induced protoporphyrin IX. Cancer 100:1650–1656CrossRefGoogle Scholar
  47. 47.
    Maruyama Y, Ichikawa D, Koizumi N et al (2012) Staging fluorescence laparoscopy for gastric cancer by using 5-aminolevulinic acid. Anticancer Res 32:5421–5427Google Scholar
  48. 48.
    Hillermans P, Wimberger P, Reif J et al (2016) Photodynamic diagnosis with 5-aminolevulinic acid for intraoperative detection of PM of ovarian cancer. A feasibility and dose finding study. Lasers Surg Med 49(2):169–176CrossRefGoogle Scholar
  49. 49.
    Yonemura Y, Canbay E, Sako S, Wakama S, Ishibashi H, Hirano M, Mizumoto A, Takao N, Ichinose M, Noguchi K, Motoi S, Liu Y, Li Y, Taniguchi K (2017 Nov) Comprehensive treatment using colorectal cancer patients with metachronous peritoneal metastasis. Gan To Kagaku Ryoho 44(12):1939–1942Google Scholar
  50. 50.
    National Institute of Health and Clinical Excellence (NICE). Cytoreduction surgery followed by hyperthermic intraoperative peritoneal chemotherapy for peritoneal carcinomatosis. IPG331. (accessed 12 August 2013)
  51. 51.
    Sugarbaker PH, Alderman R, Edwards G, Marquardt CE, Gushchin V, Esquival J et al (2005) Prospective morbidity and mortality assessment of cytoreductive surgery plus perioperative intraperitoneal chemotherapy to treat peritoneal dissemination of appendiceal mucinous malignancy. Ann Surg Oncol 13:635–644CrossRefGoogle Scholar
  52. 52.
    Smeenk RM, Verwaal VJ, Zoetmulder FA (2007) Learning curve of combined modality treatment in peritoneal surface disease. Brit J Surg 94(11):1408–1414CrossRefGoogle Scholar
  53. 53.
    Huang Y, Arzahrani NA, Liauw W et al (2017) Learning curve for cytoreductive surgery and perioperative intraperitoneal chemotherapy for peritoneal carcinomatosis. ANZ J Surg 87(1–2):49–54CrossRefGoogle Scholar
  54. 54.
    Bushati M, Rovers KP, Sommariva A, Sugarbaker PH, Morris DL, Yonemura Y, Quadros CA, Somashekhar SP, Ceelen W, Dubé P, Li Y, Verwaal VJ, Glehen O, Piso P, Spiliotis J, Teo MCC, González-Moreno S, Cashin PH, Lehmann K, Deraco M, Moran B, de Hingh IHJT (2018) The current practice of cytoreductive surgery and HIPEC for colorectal peritoneal metastases: results of a worldwide web-based survey of the Peritoneal Surface Oncology Group International (PSOGI). Eur J Surg Oncol 44(12):1942–1948. CrossRefGoogle Scholar
  55. 55.
    Hamazoe R, Maeta M, Kaibara N (1994) Intraperitoneal thermochemotherapy for prevention of peritoneal recurrence of gastric cancer. Final results of a randomized controlled study. Cancer 73(8):2048–2052CrossRefGoogle Scholar
  56. 56.
    Yonemura Y, de Aletxabala X, Fujimura T et al (2001) Intraoperative chemohyperthermic peritoneal perfusion as an adjuvant to gastric cancer: final results of a randomized controlled study. Hepato-Gastroenterology 48(42):1776–1782Google Scholar
  57. 57.
    Masuda T, Kuramoto M, Shimada S et al (2016) The effects of extensive intraoperative peritoneal lavage therapy (EIPL) in stage IIIB+C and cytology-positive gastric cancer patients. Int J Clin Oncol 21(2):289–294CrossRefGoogle Scholar
  58. 58.
    Yonemura Y, Canbay E, Endou Y, Ishibashi H, Mizumoto A, Miura M, Li Y, Liu Y, Takeshita K, Ichinose M, Takao N, Hirano M, Sako S, Tsukiyama G (2014) Peritoneal cancer treatment. Expert Opin Pharmacother 15(5):623–636. CrossRefGoogle Scholar

Copyright information

© Indian Association of Surgical Oncology 2019

Authors and Affiliations

  • Yutaka Yonemura
    • 1
    • 2
    • 3
    Email author
  • Shouzou Sako
    • 1
    • 2
  • Satoshi Wakama
    • 2
  • Haruaki Ishibashi
    • 2
  • Akiyoshi Mizumoto
    • 3
  • Nobuyuki Takao
    • 3
  • Masumi Ichinose
    • 3
  • Kousuke Noguchi
    • 3
  • Yang Liu
    • 2
  • Syunsuke Motoi
    • 3
  • Keizou Taniguchi
    • 4
  • Sachio Fushida
    • 5
  1. 1.Asian School of Peritoneal Surface Malignancy TreatmentOsakaJapan
  2. 2.Department of Regional Cancer Therapy, Peritoneal Dissemination CenterKishiwada Tokushukai HospitalKishiwadaJapan
  3. 3.Department of Regional Cancer Therapy, Peritoneal Dissemination CenterKusatsu General HospitalShigaJapan
  4. 4.Department of Surgery, Mizonoguichi HospitalTeikyou UniversityTokyoJapan
  5. 5.Department of Surgery, Kanazawa University HospitalKanazawa UniversityKanazawaJapan

Personalised recommendations