Advertisement

Predicting Air Quality by Integrating a Mesoscopic Traffic Simulation Model and Simplified Air Pollutant Estimation Models

  • Adriana Simona MihăiţăEmail author
  • Mirian Benavides Ortiz
  • Mauricio Camargo
  • Chen Cai
Article
  • 99 Downloads

Abstract

Continuous growth in traffic demand has led to a decrease in the air quality in various urban areas. More than ever, local authorities for environmental protection and urban planners are interested in performing detailed investigations using traffic and air pollution simulations for testing various urban scenarios and raising citizen awareness where necessary. This article is focused on the traffic and air pollution in the eco-neighbourhood “Nancy Grand Cœur”, located in a medium-size city from north-eastern France. The main objective of this work is to build an integrated simulation model which would predict and visualize various environmental changes inside the neighbourhood such as: air pollution, traffic flow or meteorological information. Firstly, we conduct a data profiling analysis on the received data sets together with a discussion on the daily and hourly traffic patterns, average nitrogen dioxide concentrations and the regional background concentrations recorded in the eco-neighbourhood for the study period. Secondly, we build the 3D mesoscopic traffic simulation model using real data sets from the local traffic management centre. Thirdly, by using reliable data sets from the local air-quality management centre, we build a regression model to predict the evolution of nitrogen dioxide concentrations, as a function of the simulated traffic flow and meteorological data. We then validate the estimated results through comparisons with real data sets, with the purpose of supporting the traffic engineering decision-making and the smart city sustainability. The last section of the paper is reserved for further regression studies applied to other air pollutants monitored in the eco-neighbourhood, such as sulphur dioxide and particulate matter and a detailed discussion on benefit and challenges to conduct such studies.

Keywords

Mesoscopic traffic simulation Air pollution Concentration estimation Eco-neighbourhood 

Notes

Acknowledgements

This work has been developed in the ERPI laboratory, from Nancy France, under the Chaire REVES project funding. The final writing and submission of the paper has been done in the DATA61|CSIRO research laboratory from Sydney, Australia, with further work on the analysis of SO2 and PM10 pollutants. The authors of this work are grateful for the data and support provided by Grand Nancy, Air Lorraine and FlexSim Conseil.

References

  1. 1.
    UN.: World Urbanizatin Prospects: The 2014 Revision, Highlights (ST/ESA/SER.A/352). Department oof Economic and Social Affairs, Poulation Division, New York: United Nations (2014)Google Scholar
  2. 2.
    TomTom.: [Online]. Available: https://bit.ly/1RxyKAl (2018) Accessed 4 4 2018
  3. 3.
    U. EPA.: What Are the Six Common Air Pollutants? [Online]. Available: http://www3.epa.gov/airquality/urbanair/ (2016). Accessed 30 03 2017
  4. 4.
    U. EPA.: International Decontamination Research and Development Conference. National Homeland Security Research Center, Durham, NC (2015)Google Scholar
  5. 5.
    EEA.: Air quality in Europe — 2017 report. European Environment Agency, Copenhagen, Denmark (2017)Google Scholar
  6. 6.
    OMS.: Plus sain, plus juste, plus sur: l'itinéraire de la santé dans le monde 2007-2017. Organisation mondiale de la Santé ; Licence : CC BY-NC-SA, Genève (2017)Google Scholar
  7. 7.
    W. B. Group and IHME.: The Cost of Air Pollution, Strengthening the Economic Case for Action. The World Bank and Institute for Health Metrics and Evaluation, University of Washington, Seattle (2016)Google Scholar
  8. 8.
    OCDE.: Les conséquences économiques de la pollution de l'air extérieur. Éditions OCDE, Paris (2016)Google Scholar
  9. 9.
    Xuesong, Z., Shams, T., Hao, L., Taylor, J., Bin, L., Nagui, M.: Integrating a simplified emission estimation model and mesoscopic dynamic traffic simulator to efficiently evaluate emission impacts of traffic manageent strategies. 37, 123–136.Google Scholar
  10. 10.
    T. P. S. F. P. B. J. &. C. M. Fontes.: How to combine different microsimulation tools to assess the environmental impacts of road traffic? Lessons and directions. 34, 293–306 (2015)Google Scholar
  11. 11.
    Shorshani, M.F., André, M., Bonhomme, C., Seigneur, C.: Modelling chain for the effect of road traffic on air and water quality: Techniques, current status and future prospects. 64, 102-123 (2015)Google Scholar
  12. 12.
    Nancy, G.: [Online]. Available: www.grand-nancy.org/grands-projets/nancy-grand-coeur/ . [Accessed 30 3 2017].
  13. 13.
    Mihaita, A., Camargo, M., Lhoste, P.: Optimization of a complex urban intersection using discrete event simulation and evolutionary algorithms. Cape Town, South Africa (2014)Google Scholar
  14. 14.
    Mihaita, A., Dupont, L., Camargo, M.: An urban traffic signal optimization using a 3D mesoscopic simulation approach and evolutionary algorithms (submitted) (2016)Google Scholar
  15. 15.
    MEDE.: Bilan de la qualité de l'air en France en 2012. Ministère de l'écologie et du développement durable, Direction Générale de l’Energie et du Climat, Paris (2012)Google Scholar
  16. 16.
    Lorraine, A.: Caractérisation de la qualité de l’air ambiant à Nancy en 2015 en contexte de proximité trafic. Air Lorraine, Nancy (2016)Google Scholar
  17. 17.
    van den Elshout, S.: Citeair II, common information to European air. European Union, Bruxelles (2012)Google Scholar
  18. 18.
    Ni, D.: Multiscale modeling of traffic flow. Mathematica Aeterna. 1(1), 27–54 (2011)Google Scholar
  19. 19.
    Maerivoet, S., De Moor, B.: Transportation planning and traffic flow models. Katholieke Universiteit Leuven (2005)Google Scholar
  20. 20.
    Hoogendoorn, S.P., Bovy, P.H.L.: State-of-the-art of vehicular traffic flow modelling. Journal of Systems and Control Engineering. 215(4), (2001)Google Scholar
  21. 21.
    Barceló, J.: Fundamentals of traffic simulation. Springer-Verlag, New York (2010)CrossRefGoogle Scholar
  22. 22.
    Wang, Y., Prevedouros, P. D.: Synopsis of traffic simulation models. University of Hawaii, Manoa (1996)Google Scholar
  23. 23.
    Aimsun.: TSS Barcelona. [Online]. Available: https://bit.ly/2G174KH (2017) Accessed 24 03 2018
  24. 24.
    Archer, J., Hogskolan, K.: Indicators for traffic safety assessment and prediction and their application in microsimulation modelling: a study of urban and suburban intersections. KTH, Stockholm (2005)Google Scholar
  25. 25.
    ASPA.: Modélisation de la qualité de l’air sur le futur éco-quartier Danube. Association pour la surveillance et l'étude de la Pollution Athmosphérique en Alsace., Alsace (2012)Google Scholar
  26. 26.
    Galineau, J.: Bilan des émissions atmosphériques du transport routier en Lorraine. Air Lorraine, Nancy (2012)Google Scholar
  27. 27.
    Liao, D., Valliant, R.: Variance inflation factors in the analysis of complex survey data. 38(1), 53–62 (2012)Google Scholar
  28. 28.
    Schlotzhauer, S.D.: Elementary statistics using JMP. SAS Institute Inc, Cary (2007)Google Scholar
  29. 29.
    Makridakis, S., Wheelwright, S.C., Hyndman, R.J.: Forecasting methods and applications (1998)Google Scholar
  30. 30.
    Barlas, Y.: Model validation in system dynamics. pp. 1–10 (1994)Google Scholar
  31. 31.
    H. A., K. H., S. S.L., J. J., J. H., P. T., A. F., N. T., K. M., S. J.N.: The role of relative humidity in continental new particle formation. J. Geophys. Res. Atmos 116, 909–926, (2011)Google Scholar
  32. 32.
    Hussein, T., Karppinen, A., Kukkonen, J., Härkönen, J., Aalto, P., Hämeri, K., Kerminen, V.-M., Kulmala, M.: Meteorological dependence of size-fractionated number concentrations of urban aerosol particles. Atmos. Environ. 40(1427–1440), (2006)Google Scholar
  33. 33.
    Mihăiţă, A.-S., Dupont, L., Chery, O., Camaego, M., Cai, C.: Air quality monitoring using stationary versus mobile sensing units: a case study from Lorraine, France. vol. Special Number of ITS World COngress 2018, no. (submitted) (2018)Google Scholar
  34. 34.
    Mihăiţă, A.-S., Dupont, L., Chery, O., Camaego, M., Cai, C.: Evaluating air quality by combining stationary, smart mobile pollution monitoring and data-driven modelling. vol. (submitted) (2018)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Adriana Simona Mihăiţă
    • 1
    Email author
  • Mirian Benavides Ortiz
    • 2
  • Mauricio Camargo
    • 2
  • Chen Cai
    • 1
  1. 1.DATA61EveleighAustralia
  2. 2.ERPI laboratory EA6737NancyFrance

Personalised recommendations