Advertisement

EPMA Journal

, Volume 10, Issue 2, pp 125–135 | Cite as

Blood biomarker panel recommended for personalized prediction, prognosis, and prevention of complications associated with abdominal aortic aneurysm

  • Jiri Molacek
  • Vladislav Treska
  • Jan Zeithaml
  • Ivana Hollan
  • Ondrej Topolcan
  • Ladislav Pecen
  • David Slouka
  • Marie Karlikova
  • Radek KuceraEmail author
Research
  • 18 Downloads

Abstract

The aim of the study was to evaluate the ability of following biomarkers as diagnostic tools and risk predictors of AAA: C-reactive protein, interleukin-6, pentraxin-3, galectin-3, procollagen type III N-terminal peptide, C-terminal telopeptide of type I collagen, high-sensitive troponin I, and brain natriuretic peptide. Seventy-two patients with an AAA and 100 healthy individuals were enrolled into the study. We assessed individual biomarker performance and correlation between the AAA diameter and biomarker levels, and also, a multivariate logistic regression was used to design a possible predictive model of AAA growth and rupture risk. We identified following four parameters with the highest potential to find a useful place in AAA diagnostics: galectin-3, pentraxin-3, interleukin-6, and C-terminal telopeptide of type I. The best biomarkers in our evaluation (galectin-3 and pentraxin-3) were AAA diameter-independent. With the high AUC and AAA diameter correlation, the high-sensitive troponin I can be used as an independent prognostic biomarker of the upcoming heart complications in AAA patients. Authors recommend to add biomarkers as additional parameters to the current AAA patient management. Main addition value of biomarkers is in the assessment of the AAA with the smaller diameter. Elevated biomarkers can change the treatment decision, which would be done only based on AAA diameter size. The best way how to manage the AAA patients is to create a reliable predictive model of AAA growth and rupture risk. A created multiparameter model gives very promising results with the significantly higher efficiency compared with the use of the individual biomarkers.

Keywords

Abdominal aortic aneurism Biomarker panel Pentraxin-3 Galectin-3 Interleukin-6 Procollagen type III N-terminal peptide C-Terminal telopeptide of type I collagen High-sensitive troponin I Brain natriuretic peptide Multivariate stepwise logistic regression Multivariate model Predictive preventive personalized medicine Patient stratification 

Abbreviations

AAA

abdominal aortic aneurysm

AUC

area under the curve

BNP

brain natriuretic peptide

CRP

C-reactive protein

hsTnI

high-sensitive troponin I

ICTP

C-terminal telopeptide of type I collagen

IL-6

interleukin-6

PIIINP

procollagen type III N-terminal peptide

PTX-3

pentraxin-3

ROC

receiver operating characteristic

SAS

Statistical Analysis Software

Notes

Funding information

This study was supported by the Grant of the Czech Health Research Council No.15-32727A.

Compliance with the ethical standards

Competing interests

The authors declare that they have no competing interests.

Ethical approval

All investigations conformed to the principles outlined in the Declaration of Helsinki. Informed consent was obtained from all the participants. The study was approved by the responsible Ethical Committee of the University Hospital in Pilsen on August 12, 2014.

References

  1. 1.
    Tang W, Yao L, Roetker NS, Alonso A, Lutsey PL, Steenson CC, et al. Lifetime risk and risk factors for abdominal aortic aneurysm in a 24-year prospective study: the ARIC study (atherosclerosis risk in communities). Arterioscler Thromb Vasc Biol. 2016;36:2468–77.  https://doi.org/10.1161/ATVBAHA.116.308147.CrossRefGoogle Scholar
  2. 2.
    Stackelberg O, Wolk A, Eliasson K, Hellberg A, Bersztel A, Larsson SC, et al. Lifestyle and risk of screening-detected abdominal aortic aneurysm in men. J Am Heart Assoc. 2017;6:e004725.  https://doi.org/10.1161/JAHA.116.004725.CrossRefGoogle Scholar
  3. 3.
    Oliver-Williams C, Sweeting MJ, Turton G, Parkin D, Cooper D, Rodd C, et al. Lessons learned about prevalence and growth rates of abdominal aortic aneurysms from a 25-year ultrasound population screening programme. Br J Surg. 2018;105:68–74.  https://doi.org/10.1002/bjs.10715.CrossRefGoogle Scholar
  4. 4.
    de Jesus-Silva SG, de Oliveira VR, de Moraes-Silva MA, Krupa AE, Cardoso RS. Risk factors and short and medium-term survival after open and endovascular repair of abdominal aortic aneurysms. J Vasc Bras. 2018;17:201–7.  https://doi.org/10.1590/1677-5449.011717.CrossRefGoogle Scholar
  5. 5.
    Tang W, Yao L, Hoogeveen RC, Alonso A, Couper DJ, Lutsey PL, et al. The association of biomarkers of inflammation and extracellular matrix degradation with the risk of abdominal aortic aneurysm: the ARIC study. Angiology. 2018;70:130–40.  https://doi.org/10.1177/0003319718785278.CrossRefGoogle Scholar
  6. 6.
    Ying AJ, Affan ET. Abdominal aortic aneurysm screening: a systematic review and meta-analysis of efficacy and cost. Ann Vasc Surg. 2019;54:298–303.e3.  https://doi.org/10.1016/j.avsg.2018.05.044.CrossRefGoogle Scholar
  7. 7.
    van Schaik TG, Yeung KK, Verhagen HJ, de Bruin JL, van Sambeek MRHM, Balm R, et al. Long-term survival and secondary procedures after open or endovascular repair of abdominal aortic aneurysms. J Vasc Surg. 2017;66:1379–89.  https://doi.org/10.1016/j.jvs.2017.05.122.CrossRefGoogle Scholar
  8. 8.
    Schermerhorn ML, Cronenwett JL. The UK small aneurysm trial. J Vasc Surg. 2001;33:443.CrossRefGoogle Scholar
  9. 9.
    Golubnitschaja O, Baban B, Boniolo G, Wang W, Bubnov R, Kapalla M, et al. Medicine in the early twenty-first century: paradigm and anticipation—EPMA position paper 2016. EPMA J. 2016;7:23.CrossRefGoogle Scholar
  10. 10.
    Ohno T, Aoki H, Ohno S, Nishihara M, Furusho A, Hiromatsu S, et al. Cytokine profile of human abdominal aortic aneurysm: involvement of JAK/STAT pathway. Ann Vasc Dis. 2018;11:84–90.  https://doi.org/10.3400/avd.oa.17-00086.CrossRefGoogle Scholar
  11. 11.
    Kucera R, Smid D, Topolcan O, Karlikova M, Fiala O, Slouka D, et al. Searching for new biomarkers and the use of multivariate analysis in gastric cancer diagnostics. Anticancer Res. 2016;36:1967–71.Google Scholar
  12. 12.
    Golubnitschaja O, Costigliola V, EPMA. General report & recommendations in predictive, preventive and personalised medicine 2012: white paper of the European Association for Predictive, Preventive and Personalised Medicine. EPMA J. 2012;3:14.  https://doi.org/10.1186/1878-5085-3-14.CrossRefGoogle Scholar
  13. 13.
    Urbonavicius S, Urbonaviciene G, Honoré B, Henneberg EW, Vorum H, Lindholt JS. Potential circulating biomarkers for abdominal aortic aneurysm expansion and rupture—a systematic review. Eur J Vasc Endovasc Surg Off J Eur Soc Vasc Surg. 2008;36:273–80.  https://doi.org/10.1016/j.ejvs.2008.05.009.CrossRefGoogle Scholar
  14. 14.
    Groeneveld ME, Meekel JP, Rubinstein SM, Merkestein LR, Tangelder GJ, Wisselink W, et al. Systematic review of circulating, biomechanical, and genetic markers for the prediction of abdominal aortic aneurysm growth and rupture. J Am Heart Assoc. 2018;7:e007791.  https://doi.org/10.1161/JAHA.117.007791.CrossRefGoogle Scholar
  15. 15.
    Lindberg S, Zarrouk M, Holst J, Gottsäter A. Inflammatory markers associated with abdominal aortic aneurysm. Eur Cytokine Netw. 2016;27:75–80.Google Scholar
  16. 16.
    Dawson J, Cockerill GW, Choke E, Belli A-M, Loftus I, Thompson MM. Aortic aneurysms secrete interleukin-6 into the circulation. J Vasc Surg. 2007;45:350–6.CrossRefGoogle Scholar
  17. 17.
    Treska V, Topolcan O, Pecen L. Cytokines as plasma markers of abdominal aortic aneurysm. Clin Chem Lab Med. 2000;38:1161–4.CrossRefGoogle Scholar
  18. 18.
    Arao K, Fujiwara T, Taniguchi Y, Jinnouchi H, Sasai H, Matsumoto M, et al. Implications of pentraxin 3 levels in patients with acute aortic dissection. Heart Vessel. 2015;30:211–7.  https://doi.org/10.1007/s00380-014-0470-2.CrossRefGoogle Scholar
  19. 19.
    Zhou Q, Chai X-P, Fang Z-F, Hu X-Q, Tang L. Association of plasma pentraxin-3 levels on admission with in-hospital mortality in patients with acute type a aortic dissection. Chin Med J. 2016;129:2589–95.  https://doi.org/10.4103/0366-6999.192785.CrossRefGoogle Scholar
  20. 20.
    Sawada H, Naito Y, Oboshi M, Soyama Y, Nishimura K, Eguchi A, et al. Increment of pentraxin3 expression in abdominal aortic aneurysm. Int J Cardiol. 2015;195:281–2.  https://doi.org/10.1016/j.ijcard.2015.05.177.CrossRefGoogle Scholar
  21. 21.
    Papaspyridonos M, McNeill E, de Bono JP, Smith A, Burnand KG, Channon KM, et al. Galectin-3 is an amplifier of inflammation in atherosclerotic plaque progression through macrophage activation and monocyte chemoattraction. Arterioscler Thromb Vasc Biol. 2008;28:433–40.  https://doi.org/10.1161/ATVBAHA.107.159160.CrossRefGoogle Scholar
  22. 22.
    Leone M, Iacoviello M. The predictive value of plasma biomarkers in discharged heart failure patients: role of galectin-3. Minerva Cardioangiol. 2016;64:181–94.Google Scholar
  23. 23.
    Fashanu OE, Folsom AR, Oyenuga A, Ballantyne CM, Lutsey PL, Tang W. Galectin-3 and the incidence of abdominal aortic aneurysm: the atherosclerosis risk in communities (ARIC) study. Am J Cardiovasc Dis. 2017;7:114–21.Google Scholar
  24. 24.
    Fernandez-García C-E, Tarin C, Roldan-Montero R, Martinez-Lopez D, Torres-Fonseca M, Lindhot JS, et al. Increased galectin-3 levels are associated with abdominal aortic aneurysm progression and inhibition of galectin-3 decreases elastase-induced AAA development. Clin Sci Lond Engl. 2017;1979:2707–19.  https://doi.org/10.1042/CS20171142.CrossRefGoogle Scholar
  25. 25.
    Martufi G, Gasser TC. Turnover of fibrillar collagen in soft biological tissue with application to the expansion of abdominal aortic aneurysms. J R Soc Interface. 2012;9:3366–77.  https://doi.org/10.1098/rsif.2012.0416.CrossRefGoogle Scholar
  26. 26.
    Lindholt JS, Heickendorff L, Vammen S, Fasting H, Henneberg EW. Five-year results of elastin and collagen markers as predictive tools in the management of small abdominal aortic aneurysms. Eur J Vasc Endovasc Surg Off J Eur Soc Vasc Surg. 2001;21:235–40.  https://doi.org/10.1053/ejvs.2001.1329.CrossRefGoogle Scholar
  27. 27.
    Ormezzano O, Baguet J-P, Thony F, Blin D, Chavanon O, Toussaint B, et al. Aminoterminal propeptide of type III procollagen (PIIINP) is associated with ascending aortic aneurysm growth rate. Int J Cardiol. 2010;145:379–80.  https://doi.org/10.1016/j.ijcard.2010.02.051.CrossRefGoogle Scholar
  28. 28.
    Tambyraja AL, Dawson ARW, Murie JA, Chalmers RTA. Cardiac troponin I predicts outcome after ruptured abdominal aortic aneurysm repair. Br J Surg. 2005;92:824–7.  https://doi.org/10.1002/bjs.4995.CrossRefGoogle Scholar
  29. 29.
    Li G, Wu X-W, Lu W-H, Cheng J, Wu X-Y, Ai R, et al. High-sensitivity cardiac troponin T: a biomarker for the early risk stratification of type-A acute aortic dissection? Arch Cardiovasc Dis. 2016;109:163–70.  https://doi.org/10.1016/j.acvd.2015.09.007.CrossRefGoogle Scholar
  30. 30.
    Acosta S, Gottsäter A, Engström G, Melander O, Zarrouk M, Nilsson PM, et al. B-type natriuretic peptide for prediction of incident clinically significant abdominal aortic aneurysm: a population-based prospective study. Vasc Med Lond Engl. 2018;23:46–51.  https://doi.org/10.1177/1358863X17745150.CrossRefGoogle Scholar
  31. 31.
    Taimour S, Zarrouk M, Holst J, Melander O, Engström G, Smith JG, et al. No relation between biomarkers at age 47–49 and aortic diameter after 14–19 years of follow-up—a population-based study. Vasa. 2017;46:291–5.  https://doi.org/10.1024/0301-1526/a000632.CrossRefGoogle Scholar
  32. 32.
    Lu M, Zhan X. The crucial role of multiomic approach in cancer research and clinically relevant outcomes. EPMA J. 2018;9:77–102.  https://doi.org/10.1007/s13167-018-0128-8.CrossRefGoogle Scholar
  33. 33.
    Cheng T, Zhan X. Pattern recognition for predictive, preventive, and personalized medicine in cancer. EPMA J. 2017;8:51–60.  https://doi.org/10.1007/s13167-017-0083-9.CrossRefGoogle Scholar
  34. 34.
    Golubnitschaja O, Polivka J Jr, Yeghiazaryan K, Berliner L. Liquid biopsy and multiparametric analysis in management of liver malignancies: new concepts of the patient stratification and prognostic approach. EPMA J. 2018;9:271–85.  https://doi.org/10.1007/s13167-018-0146-6.CrossRefGoogle Scholar

Copyright information

© European Association for Predictive, Preventive and Personalised Medicine (EPMA) 2019

Authors and Affiliations

  1. 1.Department of SurgeryUniversity Hospital and Faculty of Medicine in PilsenPilsenCzech Republic
  2. 2.Department of RheumatologyHospital for Rheumatic DiseasesLillehammerNorway
  3. 3.Department of ResearchInnlandet Hospital TrustBrumunddalNorway
  4. 4.Division of Cardiology, Department of MedicineBrigham and Women’s HospitalBostonUSA
  5. 5.Department of Immunochemistry DiagnosticsUniversity Hospital and Faculty of Medicine in PilsenPilsenCzech Republic
  6. 6.Department of Immunochemistry DiagnosticsUniversity Hospital PilsenPilsenCzech Republic

Personalised recommendations