Mixed estimates for singular integrals on weighted Hardy spaces

  • María Eugenia Cejas
  • Estefanía DalmassoEmail author


In this paper we give quantitative bounds for the norms of different kinds of singular integral operators on weighted Hardy spaces \(H_w^p\), where \(0<p\le 1\) and w is a weight in the Muckenhoupt \(A_{\infty }\) class. We deal with Fourier multiplier operators, Calderón–Zygmund operators of homogeneous type which are particular cases of the first ones, and, more generally, we study singular integrals of convolution type. In order to prove mixed estimates in the setting of weighted Hardy spaces, we need to introduce several characterizations of weighted Hardy spaces by means of square functions, Littlewood–Paley functions and the grand maximal function. We also establish explicit quantitative bounds depending on the weight w when switching between the \(H^p_w\)-norms defined by the Littlewood–Paley–Stein square function and its discrete version, and also by applying the mixed bound \(A_q-A_\infty \) result for the vector-valued extension of the Hardy–Littlewood maximal operator given in Buckley (Trans Am Math Soc 340(1):253–272, 1993).


Weighted Hardy spaces Singular integrals Mixed estimates Calderón–Zygmund operators Fourier multipliers 

Mathematics Subject Classification

42B30 42B20 42B15 42B25 



María Eugenia wants to mention that the study of these estimates was pointed out by Sheldy Ombrosi, her supervisor during postdoctoral research, which was done under a fellowship granted by CONICET, Argentina. Also, she would like to thank Carlos Pérez, Cristina Pereyra and Michael Wilson for their help and interest when contacting them.


First author was supported by Universidad de Buenos Aires (Grant No. 20020120100050), by Agencia Nacional de Promoción Científica y Tecnológica (Grant No. PICT 2014-1771) and by Universidad Nacional de La Plata (Grant No. UNLP 11/X752 and UNLP 11/X805). Second author was supported by Universidad Nacional del Litoral (Grants No. CAI+D 2015-026 and CAI+D 2015-066).


  1. 1.
    Buckley, S.M.: Estimates for operator norms on weighted spaces and reverse Jensen inequalities. Trans. Am. Math. Soc. 340(1), 253–272 (1993)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Cejas, M.E., Li, K., Pérez, C., Rivera-Ríos,I.P.: A sparse approach to sharp weighted estimates for vector-valued operators. Sci. China Math. (in press). Preprint available at arXiv:1712.05781
  3. 3.
    Cruz-Uribe, D., Martell, J.M., Pérez, C.: Extrapolation from \(A_\infty \) weights and applications. J. Funct. Anal. 213(2), 412–439 (2004)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cruz-Uribe, D., Martell, J.M., Pérez, C.: Sharp weighted estimates for classical operators. Adv. Math. 229(1), 408–441 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Dragičević, O., Grafakos, L., Pereyra, M.C., Petermichl, S.: Extrapolation and sharp norm estimates for classical operators on weighted Lebesgue spaces. Publ. Mat. 49(1), 73–91 (2005)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ding, Y., Yongsheng, H., Lu, G., Wu, X.: Boundedness of singular integrals on multiparameter weighted Hardy spaces \(H^p_w (\mathbb{R}^n\times \mathbb{R}^m)\). Potential Anal. 37(1), 31–56 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dindoš, M., Wall, T.: The sharp \(A_p\) constant for weights in a reverse-Hölder class. Rev. Mat. Iberoam. 25(2), 559–594 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Frazier, M., Jawerth, B.: Decomposition of Besov spaces. Indiana Univ. Math. J. 34(4), 777–799 (1985)MathSciNetCrossRefGoogle Scholar
  9. 9.
    García-Cuerva, J.: Weighted Hardy spaces. In: Harmonic Analysis in Euclidean Spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978), Part 1Google Scholar
  10. 10.
    Gundy, R.F., Wheeden, R.L.: Weighted integral inequalities for the nontangential maximal function, Lusin area integral, and Walsh–Paley series. Stud. Math. 49, 107–124 (1973/74)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hytönen, T.P., Lacey, M.T., Pérez, C.: Sharp weighted bounds for the \(q\)-variation of singular integrals. Bull. Lond. Math. Soc. 45(3), 529–540 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hart, J., Oliveira, L.: Hardy space estimates for limited ranges of Muckenhoupt weights. Adv. Math. 313, 803–838 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hytönen, T., Pérez, C.: Sharp weighted bounds involving \(A_\infty \). Anal. PDE 6(4), 777–818 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hagelstein, P., Parissis, I.: Weighted Solyanik estimates for the Hardy-Littlewood maximal operator and embedding of \(\cal{A}_\infty \) into \(\cal{A}_p\). J. Geom. Anal. 26(2), 924–946 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hytönen, T.P.: The sharp weighted bound for general Calderón–Zygmund operators. Ann. Math. (2), 175(3):1473–1506 (2012)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Korey, M.B.: Ideal weights: asymptotically optimal versions of doubling, absolute continuity, and bounded mean oscillation. J. Fourier Anal. Appl. 4(4–5), 491–519 (1998)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kurtz, D.S., Wheeden, R.L.: Results on weighted norm inequalities for multipliers. Trans. Am. Math. Soc. 255, 343–362 (1979)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Lee, M.-Y.: Calderón-Zygmund operators on weighted Hardy spaces. Potential Anal. 38(3), 699–709 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Lerner, A.K.: On some weighted norm inequalities for Littlewood-Paley operators. Illinois J. Math. 52(2), 653–666 (2008)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Lee, M.-Y., Lin, C.-C.: The molecular characterization of weighted Hardy spaces. J. Funct. Anal. 188(2), 442–460 (2002)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lerner, A.K., Ombrosi, S., Pérez, C.: Sharp \(A_1\) bounds for Calderón–Zygmund operators and the relationship with a problem of Muckenhoupt and Wheeden. Int. Math. Res. Not. IMRN, (6):Art. ID rnm161, 11 (2008)Google Scholar
  22. 22.
    Lu, G., Zhu, Y.: Bounds of singular integrals on weighted Hardy spaces and discrete Littlewood–Paley analysis. J. Geom. Anal. 22(3), 666–684 (2012)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Mitsis, T.: Embedding \(B_\infty \) into Muckenhoupt classes. Proc. Am. Math. Soc. 133(4), 1057–1061 (2005)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Meda, S., Sjögren, P., Vallarino, M.: Atomic decompositions and operators on Hardy spaces. Rev. Un. Mat. Argentina 50(2), 15–22 (2009)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Petermichl, S.: The sharp bound for the Hilbert transform on weighted Lebesgue spaces in terms of the classical \(A_p\) characteristic. Am. J. Math. 129(5), 1355–1375 (2007)CrossRefGoogle Scholar
  26. 26.
    Petermichl, S.: The sharp weighted bound for the Riesz transforms. Proc. Am. Math. Soc. 136(4), 1237–1249 (2008)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Politis, A.: Sharp results on the relation between weight spaces and BMO. ProQuest LLC, Ann Arbor, MI, 1995. Thesis (Ph.D.), The University of ChicagoGoogle Scholar
  28. 28.
    Petermichl, S., Pott, S.: An estimate for weighted Hilbert transform via square functions. Trans. Am. Math. Soc. 354(4), 1699–1703 (2002)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Petermichl, S., Volberg, A.: Heating of the Ahlfors–Beurling operator: weakly quasiregular maps on the plane are quasiregular. Duke Math. J. 112(2), 281–305 (2002)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Strömberg, J.-O., Torchinsky, A.: Weighted Hardy Spaces. Lecture Notes in Mathematics, vol. 1381. Springer, Berlin (1989)CrossRefGoogle Scholar
  31. 31.
    Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, N.J. (1970)Google Scholar
  32. 32.
    Wik, I.: On Muckenhoupt’s classes of weight functions. Stud. Math. 94(3), 245–255 (1989)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Wilson, J.M.: Weighted inequalities for the square function. In: Commutative harmonic analysis (Canton, NY, 1987), volume 91 of Contemp. Math., pp. 299–305. Amer. Math. Soc., Providence (1989)Google Scholar
  34. 34.
    Wilson, J.M.: Chanillo-Wheeden inequalities for \(0<p\le 1\). J. Lond. Math. Soc. (2), 41(2):283–294 (1990)Google Scholar
  35. 35.
    Wilson, M.: Weighted Littlewood–Paley Theory and Exponential-Square Integrability. Lecture Notes in Mathematics, vol. 1924. Springer, Berlin (2008)zbMATHGoogle Scholar
  36. 36.
    Wang, H., Liu, H.: The intrinsic square function characterizations of weighted Hardy spaces. Illinois J. Math. 56(2), 367–381 (2012)MathSciNetCrossRefGoogle Scholar

Copyright information

© Universidad Complutense de Madrid 2019

Authors and Affiliations

  1. 1.Departamento de Matemática, Facultad de Ciencias ExactasUniversidad Nacional de La Plata, CONICETLa PlataArgentina
  2. 2.Instituto de Matemática Aplicada del LitoralUNL, CONICET, FIQ.Santa FeArgentina

Personalised recommendations