A sharp blow-up estimate for the Lebesgue norm

  • Fernando Farroni
  • Alberto FiorenzaEmail author
  • Raffaella Giova


We prove that if \(p>1\) and \(\psi :]0,p-1[\rightarrow ]0,\infty [\) is nondecreasing, then
$$\begin{aligned} \sup _{0<\varepsilon<p-1} \psi (\varepsilon ) \Vert f\Vert _{L^{p-\varepsilon }(0,1)}\approx & {} \sup _{0<t<1} \psi \left( \frac{p-1}{1-\log t}\right) \Vert f^*\Vert _{L^{p}(t,1)} \\&\mathop {\Updownarrow }\limits _{{\begin{array}{c} \psi \,\in \,\Delta _2\,\cap \, L^\infty . \end{array}}} \end{aligned}$$
Here f is a Lebesgue measurable function on (0, 1) and \(f^*\) denotes the decreasing rearrangement of f. The proof generalizes and makes sharp an equivalence previously known only in the particular case when \(\psi \) is a power; such case had a relevant role for the study of grand Lebesgue spaces. A number of consequences are discussed, among which: the behavior of the fundamental function of generalized grand Lebesgue spaces, an analogous equivalence in the case the assumption on the monotonicity of \(\psi \) is dropped, and an optimal estimate of the blow-up of the Lebesgue norms for functions in Orlicz–Zygmund spaces.


Lebesgue spaces Grand Lebesgue spaces Euler’s Gamma function Orlicz–Zygmund spaces Fundamental function \(\Delta _2\) Condition Norm blow-up Banach function spaces 

Mathematics Subject Classification

46E30 26D15 



The research of the first and the third author has been partially supported by the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). The third author acknowledges also the support by Università degli Studi di Napoli Parthenope through the Project “Sostegno alla ricerca individuale (annualità 2015–2016–2017)” and the Project “Sostenibilità, esternalità e uso efficiente delle risorse ambientali (triennio 2017–2019)”. The authors are grateful to the anonymous referees for the very detailed reports, rich of pertinent issues. Because of their several comments, the exposition has been significantly improved.


  1. 1.
    Anatriello, G., Chill, R., Fiorenza, A.: Identification of fully measurable grand Lebesgue spaces. J. Funct. Spaces 2017, 3129186 (2017)Google Scholar
  2. 2.
    Anatriello, G., Formica, M.R., Giova, R.: Fully measurable small Lebesgue spaces. J. Math. Anal. Appl. 447(1), 550–563 (2017)Google Scholar
  3. 3.
    Bardaro, C., Musielak, J., Vinti, G.: Nonlinear Integral Operators and Applications, De Gruyter Series in Nonlinear Analysis and Applications, vol. 9. Walter de Gruyter, Berlin (2003)zbMATHGoogle Scholar
  4. 4.
    Bennett, C., Sharpley, R.: Interpolation of Operators, Pure and Applied Mathematics, vol. 129. Academic Press Inc, Boston, MA (1988)zbMATHGoogle Scholar
  5. 5.
    Capone, C., Fiorenza, A.: On small Lebesgue spaces. J. Funct. Spaces Appl. 3(1), 73–89 (2005)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Capone, C., Formica, M.R., Giova, R.: Grand Lebesgue spaces with respect to measurable functions. Nonlinear Anal. 85, 125–131 (2013)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Carozza, M., Moscariello, G., Passarelli di Napoli, A.: Regularity for \(p\)-harmonic equations with right-hand side in Orlicz–Zygmund classes. J. Differ. Equ. 242(2), 248–268 (2007)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Černý, R.: Moser–Trudinger inequality in grand Lebesgue space. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 26(2), 177–188 (2015)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Cobos, F., Kühn, T.: Extrapolation results of Lions–Peetre type. Calc. Var. Partial Differ. Equ. 49(1–2), 847–860 (2014)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the Lambert \(W\) function. Adv. Comput. Math. 5(4), 329–359 (1996)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Di Fratta, G., Fiorenza, A.: A direct approach to the duality of grand and small Lebesgue spaces. Nonlinear Anal. 70(7), 2582–2592 (2009)MathSciNetzbMATHGoogle Scholar
  12. 12.
    D’Onofrio, L., Sbordone, C., Schiattarella, R.: Grand Sobolev spaces and their applications in geometric function theory and PDEs. J. Fixed Point Theory Appl. 13, 309–340 (2013)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Fiorenza, A.: Duality and reflexivity in grand Lebesgue spaces. Collect. Math. 51(2), 131–148 (2000)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Fiorenza, A., Formica, M.R., Gogatishvili, A.: On grand and small Lebesgue and Sobolev spaces and some applications to PDE’s. Differ. Equ. Appl. 10(1), 21–46 (2018)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Fiorenza, A., Formica, M.R., Rakotoson, J.M.: Pointwise estimates for G\(\Gamma -\) functions and applications. Differ. Integral Equ. 30(11–12), 809–824 (2017)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Fiorenza, A., Karadzhov, G.E.: Grand and small Lebesgue spaces and their analogs. Z. Anal. Anwendungen 23(4), 657–681 (2004)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Fiorenza, A., Krbec, M.: On an optimal decomposition in Zygmund spaces. Georgian Math. J. 9(2), 271–286 (2002)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Fiorenza, A., Rakotoson, J.M.: Some estimates in \(G\Gamma (p, m, w)\) spaces. J. Math. Anal. Appl. 340(2), 793–805 (2008)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Fiorenza, A., Rakotoson, J.M.: New properties of small Lebesgue spaces and their applications. Math. Ann. 326(3), 543–561 (2003)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Gogatishvili, A., Aykol, C., Guliyev, V.S.: Characterization of associate spaces of generalized weighted weak-Lorentz spaces and embeddings. Studia Math. 228(3), 223–233 (2015)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Gogatishvili, A., Pick, L., Soudský, F.: Characterization of associate spaces of weighted Lorentz spaces with applications. Stud. Math. 224(1), 1–23 (2014)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Greco, L., Iwaniec, T., Sbordone, C.: Inverting the p-harmonic operator. Manuscr. Math. 92, 249–258 (1997)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Iwaniec, T., Koskela, P., Onninen, J.: Mappings of finite distortion: monotonicity and continuity. Invent. Math. 144(3), 507–531 (2001)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Jain, P., Singh, M., Singh, A.P.: Duality of fully measurable grand Lebesgue space. Trans. A. Razmadze Math. Inst. 171(1), 32–47 (2017)MathSciNetGoogle Scholar
  25. 25.
    Karapetyants, A., Samko, A.: On grand and small Bergman spaces. Math. Notes 104(3–4), 431–436 (2018)MathSciNetGoogle Scholar
  26. 26.
    Křepela, M.: Convolution inequalities in weighted Lorentz spaces. Math. Ineq. Appl. 17(4), 1201–1223 (2014)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Maligranda, L.: Orlicz spaces and interpolation, Seminários de Matemática [Seminars in Mathematics], vol. 5. Universidade Estadual de Campinas, Departamento de Matemática, Campinas (1989)Google Scholar
  28. 28.
    Persson, L.E.: Interpolation with a parameter function. Math. Scand. 59(2), 199–222 (1986)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Pustylnik, E.: Optimal interpolation in spaces of Lorentz–Zygmund type. J. d’Analyse Math. 79, 113–157 (1999)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Rafeiro, H.: A note on boundedness of operators in grand grand Morrey spaces. Advances in harmonic analysis and operator theory, Oper. Theory Adv. Appl., vol. 229, Birkhäuser/Springer Basel AG, Basel, pp. 349–356 (2013)Google Scholar
  31. 31.
    Rao, M.M., Ren, Z.D.: Theory of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 146. Marcel Dekker Inc, New York (1991)Google Scholar
  32. 32.
    Umarkhadzhiev, S. M.: Generalization of the notion of grand Lebesgue space. In: Russian Math. (Iz. VUZ) 58(4), 35–43 (2014), Translation of Izv. Vyssh. Uchebn. Zaved. Mat. 4, 42–51 (2014)Google Scholar

Copyright information

© Universidad Complutense de Madrid 2019

Authors and Affiliations

  • Fernando Farroni
    • 1
  • Alberto Fiorenza
    • 2
    • 3
    Email author
  • Raffaella Giova
    • 4
  1. 1.Dipartimento di Matematica e Applicazioni R. CaccioppoliUniversità di Napoli Federico IINapoliItaly
  2. 2.Dipartimento di ArchitetturaUniversità di Napoli Federico IINapoliItaly
  3. 3.Istituto per le Applicazioni del Calcolo “Mauro Picone”, sezione di NapoliConsiglio Nazionale delle RicercheNapoliItaly
  4. 4.Università degli Studi di Napoli ParthenopeNapoliItaly

Personalised recommendations