Rearrangement estimates for \(A_\infty \) weights
Article
First Online:
- 15 Downloads
Abstract
We find a new characterizations of an \(A_{\infty }\) weight \(\omega \), in terms of the decreasing rearrangement of the restriction of \(\omega \) to cubes Q.
Keywords
Muckenhoupt weights Reverse Hölder inequality Decreasing rearrangementMathematics Subject Classification
42B25 46E30Notes
Acknowledgements
We would like to thank the referees for their valuable comments which have really improved the final version of this manuscript. In particular, the Proof of Lemma 2.1 has been simplified, even obtaining a better estimate on the exponents involved.
References
- 1.Agora, E., Carro, M.J., Soria, J.: Characterization of the weak-type boundedness of the Hilbert transform on weighted Lorentz spaces. J. Fourier Anal. Appl. 19(4), 712–730 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
- 2.Bennett, C., Sharpley, R.: Interpolation of Operators. Academic Press, Boston (1988)zbMATHGoogle Scholar
- 3.Bojarski, B., Sbordone, C., Wik, I.: The Muckenhoupt class \(A_1({\mathbb{R}})\). Studia Math. 101(2), 155–163 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
- 4.Coifman, R.R., Fefferman, C.: Weighted norm inequalities for maximal functions and singular integrals. Studia Math. 51, 241–250 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
- 5.Duoandikoetxea, J., Martín-Reyes, F.J., Ombrosi, S.: On the \(A_\infty \) conditions for general bases. Math. Z. 282, 955–972 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
- 6.Fujii, N.: Weighted bounded mean oscillation and singular integrals. Math. Japon 22, 529–534 (1977/1978)Google Scholar
- 7.García-Cuerva, J., Rubio de Francia, J.L.: Weighted Norm Inequalities and Related Topics, Mathematical Studies, vol. 116. North-Holland, Amsterdam (1985)zbMATHGoogle Scholar
- 8.Hytönen, T., Pérez, C.: Sharp weighted bounds involving \(A_{\infty }\). Anal. PDE 6, 777–818 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
- 9.Hytönen, T., Pérez, C., Rela, E.: Sharp reverse Hölder property for \(A_\infty \) weights on spaces of homogeneous type. J. Funct. Anal. 263(12), 3883–3899 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
- 10.Johnson, R., Neugebauer, C.J.: Homeomorphisms preserving \(A_p\). Rev. Mat. Iberoam. 3(2), 249–273 (1987)CrossRefzbMATHGoogle Scholar
- 11.Johnson, R., Neugebauer, C.J.: Change of variable results for \(A_p\)- and reverse Hölder \({\rm RH}_r\)-classes. Trans. Am. Math. Soc. 328(2), 639–666 (1991)Google Scholar
- 12.Leonchik, E.Yu.: On an estimate for the rearrangement of a function from the Muckenhoupt class \(A_1\), Ukraïn. Mat. Zh. 62 (2010), no. 8, 1145–1148 (Russian, with English summary); English transl., Ukrainian Math. J. 62, no. 8, 1333–1338 (2011)Google Scholar
- 13.Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165, 207–226 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
- 14.Neugebauer, C.J.: The precise range of indices for the \(\text{RH}_r\)- and \(\text{ A }_p\)- weight classes. Preprint available at https://arxiv.org/pdf/math/9809162.pdf
- 15.Nikolidakis, E.N.: Dyadic \(A_1\) weights and equimeasurable rearrangements of functions. J. Geom. Anal. 26(2), 782–790 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
- 16.Nikolidakis, E.N., Melas, A.D.: Dyadic weights on \({{\mathbb{R}}^{n}}\) and reverse Hölder inequalities. Studia Math. 234(3), 281–290 (2016)MathSciNetzbMATHGoogle Scholar
- 17.Wik, I.: On Muckenhoupt’s classes of weight functions. Studia Math. 94(3), 245–255 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
- 18.Wilson, J.M.: Weighted inequalities for the dyadic square function without dyadic \(A_\infty \). Duke Math. J. 55, 19–49 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
Copyright information
© Universidad Complutense de Madrid 2019