Shape optimization approach to defect-shape identification with convective boundary condition via partial boundary measurement

  • Julius Fergy T. RabagoEmail author
  • Hideyuki Azegami
Original Paper Area 2


We aim to identify the geometry (i.e., the shape and location) of a cavity inside an object through the concept of thermal imaging. More precisely, we present an identification procedure to determine the geometric shape of a cavity with convective boundary condition in a heat-conducting medium using the measured temperature on a part of the surface of the object. The inverse problem of identifying the cavity is resolved by shape optimization techniques, specifically by minimizing a least-squares type cost functional over a set of admissible geometries. The computation of the first-order shape derivative or shape gradient of the cost is carried out through minimax formulation, which is then justified by the Correa–Seeger theorem coupled with function space parametrization technique. We further characterize its boundary integral form using some identities from tangential calculus. Then, we utilize the computed expression for the shape gradient to implement an effective boundary variation algorithm for the numerical resolution of the shape optimization problem. To avoid boundary oscillations or irregular shapes in our approximations, we execute the gradient-based scheme using the \(H^1\) gradient method with perimeter regularization. Also, we propose a novel application of the said method in computing the mean curvature of the free boundary appearing in the shape gradient of the cost functional. We illustrate the feasibility of the proposed method by testing the numerical scheme to several cavity identification problems. Additionally, we also give some numerical examples for the case of corrosion detection since its inverse problem interpreted in the framework of electrostatic imaging is closely related to the focused problem.


Shape identification Shape optimization Geometric inverse problem Lagrange multiplier method Minimax formulation 

Mathematics Subject Classification

49Q10 49Q12 34A55 35Q93 



J. F. T. Rabago greatly acknowledges Monbukagakusho (the Japanese Ministry of Education, Culture, Sports, Science and Technology) for scholarship support during his PhD program.


  1. 1.
    Afraites, L., Dambrine, M., Kateb, D.: Shape methods for the transmission problem with a single measurement. Numer. Funct. Anal. Optim. 28(5–6), 519–551 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Azegami, H.: A solution to domain optimization problems. Trans. Jpn. Soc. Mech. Eng. Ser. A 60, 1479–1486 (1994). (in Japanese)CrossRefGoogle Scholar
  3. 3.
    Azegami, H., Wu, Z.Q.: Domain optimization analysis in linear elastic problems: approach using traction method. JSME Int. J. Ser. A 39(2), 272–278 (1996)Google Scholar
  4. 4.
    Azegami, H., Kaizu, S., Shimoda, M., Katamine, E.: Irregularity of shape optimization problems and an improvement technique. In: Hernandez, S., Brebbia, C.A. (eds.) Computer Aided Optimization Design of Structures V, pp. 309–326. Computational Mechanics Publications, Southampton (1997)Google Scholar
  5. 5.
    Azegami, H., Takeuchi, Z.: A smoothing method for shape optimization: traction method using the Robin condition. Int. J. Comput. Methods Singap. 3(1), 21–33 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Azegami, H., Ohtsuka, K., Masato, K.: Shape derivative of cost function for singular point: evaluation by the generalized J integral. JSIAM Lett. 6, 29–32 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Azegami, H., Fukumoto, S., Aoyama, T.: Shape optimization of continua using nurbs as basis functions. Struct. Multidiscipl. Optim. 47(2), 247–258 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Azegami, H.: Solution of shape optimization problem and its application to product design. In: Itou, H., Kimura, M., Chalupecký, V., Ohtsuka, K., Tagami, D., Takada, A. (eds.) Mathematical Analysis of Continuum Mechanics and Industrial Applications. Mathematics for Industry, vol. 26, pp. 83–98. Springer, Singapore (2016)CrossRefGoogle Scholar
  9. 9.
    Bacani, J.B., Peichl, G.H.: On the first-order shape derivative of the Kohn-Vogelius cost functional of the Bernoulli problem. Abstr. Appl. Anal. 2013(384320), 1–19 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bacani, J.B., Peichl, G.H.: Solving the exterior Bernoulli problem using the shape derivative approach. In: Mohapatra, R., Giri, D., Saxena, P.K., Srivastava, P.D. (eds.) Mathematics and Computing 2013: Springer Proceedings in Mathematics and Statistics, vol. 91. Springer, New Delhi, pp. 251–269 (2014)Google Scholar
  11. 11.
    Bacchelli, F.: Uniqueness for the determination of unknown boundary and impedance with homogenous Robin condition. Inverse Probl. 25(1), 015004 (2009). 4ppCrossRefzbMATHGoogle Scholar
  12. 12.
    Bayili, G., Sene, A., Niane, M.T.: Control of singularities for the Laplace equation. Ann. Univ. Craiova Ser. Mat. Inform. 40(2), 226–236 (2013)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Ben Abda, A., Jaïem, E., Khalfallah, S., Zine, A.: An energy gap functional: cavity identification in linear elasticity. J. Inverse Ill-Posed Probl. 25(5), 573–595 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ben Ameur, H., Burger, M., Hackl, B.: Cavity identification in linear elasticity and thermo-elasticity. Math. Methods Appl. Sci. 30(6), 625–647 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Burger, M.: A framework for the construction of level set methods for shape optimization and reconstruction. Interfaces Free Bound. 5, 301–329 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Buttazzo, G., Khon, R.V.: Reinforcement by a thin layer with oscillating thickness. Appl. Math. Optim. 16, 247–261 (1988)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Cakoni, F., Kress, R.: Integral equations methods for the inverse obstacle problems with generalized impedance boundary. Inverse Probl. 29(1), 015005 (2013). 19ppMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Cakoni, F., Kress, R.: Integral equations for inverse problems in corrosion detection from partial Cauchy data boundary. Inverse Probl. Imaging 1(2), 229–245 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Caubet, F., Dambrine, M., Kateb, D.: Shape optimization methods for the inverse obstacle problem with generalized impedance boundary conditions. Inverse Probl. 29(11), 115011 (2013). 26ppMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Colton, D., Kress, R.: In: Marsden J.E., Sirovich, L. (eds.) Inverse Acoustic and Electromagnetic Scattering Theory, 2nd edn. Springer, Berlin (1998)Google Scholar
  21. 21.
    Correa, R., Seeger, A.: Directional derivative of a minimax function. Nonlinear Anal. Theory Methods Appl. 9, 13–22 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Delfour, M.C., Zolésio, J.-P.: Shapes and geometries: metrics, analysis, differential calculus, and optimization. In: Advance Design Control, 2nd edn, vol. 22. SIAM, Philadelphia (2011)Google Scholar
  23. 23.
    Doǧan, G., Morin, P., Nochetto, R.H., Verani, M.: Discrete gradient flows for shape optimization and applications. Special Issue Honoring the 80th Birthday of Professor Ivo Babuška. Comput. Methods Appl. M. 196(3740), 3898–3914 (2007)Google Scholar
  24. 24.
    Ekeland, I., Temam, R.: Convex Analysis and Variational Problems (translated from the French, Studies in Mathematics and Its Applications, vol. 1. North-Holland Publishing Co., Amsterdam (1976)zbMATHGoogle Scholar
  25. 25.
    Haslinger, J., Neittaanmäki, P.: Finite Element Approximation for Optimal Shape Design: Theory and Applications. Wiley, Chichester (1988)zbMATHGoogle Scholar
  26. 26.
    Hecht, F.: New development in FreeFem\(++\). J. Numer. Math. 20(3–4), 251–265 (2012)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Imam, M.H.: Three dimensional shape optimization. Int. J. Numer. Methods Eng. 18, 661–673 (1982)CrossRefzbMATHGoogle Scholar
  28. 28.
    Inglese, G.: An inverse problem in corrosion detection. Inverse Probl. 13(4), 977–994 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Inglese, G., Santosa, F.: An inverse problem in corrosion detection. In: Pubblicazioni dell’Istituto di Analisi Globale ed Applicazioni del CNR Firenze no. 75 (1995)Google Scholar
  30. 30.
    Jaiem, E.: Shape derivative of an energy error functional for voids detection from sub-Cauchy data. Electron. J. Differ. Equ. 2016(265), 1–13 (2016)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Jaiem, E., Ben Abda, A., Rjaibi, B.: Cavities identification from partially overdetermined boundary data in linear elasticity. J. Appl. Comput. Math. 5(1), 295, 9p (2016)Google Scholar
  32. 32.
    Jones, D.A.: Principles and Prevention of Corrosion. Prentice Hall, Upper Saddle River (1996)Google Scholar
  33. 33.
    Karageorghis, A., Lesnic, D., Marin, L.: The method of fundamental solutions for the detection of rigid inclusions and cavities in plane linear elastic bodies. Comput. Struct. 106–107, 176–188 (2012)CrossRefGoogle Scholar
  34. 34.
    Karageorghis, A., Lesnic, D., Marin, L.: The method of fundamental solutions for three-dimensional inverse geometric elasticity problems. Comput. Struct. 166, 51–59 (2016)CrossRefGoogle Scholar
  35. 35.
    Kasumba, H.: Shape optimization approaches to free-surface problems. Int. J. Numer. Methods Fluids 74, 818–845 (2014)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Kazemzadeh-Parsi, M.J., Daneshmand, F.: Cavity-shape identification with convective boundary conditions using non-boundary fitted meshes. Numer. Heat Transf. B Fundam. 57, 283–305 (2010)CrossRefGoogle Scholar
  37. 37.
    Kubo, S.: Inverse analyses and their applications to nondestructive evaluations. In: Proceedings of the 12th A-PCNDT 2006—Asia–Pacific Conference on NDT, Auckland (2006)Google Scholar
  38. 38.
    Kurahashi, T., Maruoka, K., Iyama, T.: Numerical shape identification of cavity in three dimensions based on thermal non-destructive testing data. Eng. Optim. 49(3), 434–448 (2017)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Meftahi, H., Zolésio, J.-P.: Sensitivity analysis for some inverse problems in linear elasticity via minimax differentiability. Appl. Math. Model. 39(5–6), 1554–1576 (2015)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Meftahi, H.: Stability analysis in the inverse Robin transmission problem. Math. Methods Appl. Sci. 40, 2505–2521 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Mendoza, R., Keeling, S.: A two-phase segmentation approach to the impedance tomography problem. Inverse Probl. 33(1), 015001 (2017). 24ppMathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Mghazli, Z.: Regularity of an elliptic problem with mixed Dirichlet-Robin boundary conditions in a polygonal domain. Calcolo 29(3–4), 241–267 (1993)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Neuberger, J.: Sobolev gradients and differential equations. In: Morel, J.-M., Teissier, B. (eds.) Lecture Notes in Mathematics. Springer, Berlin (2010)Google Scholar
  44. 44.
    Pagani, C.D., Pierotti, D.: Identifiability problems of defects with the Robin condition. Inverse Probl. 25(12), 055007 (2009). 12ppMathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Pironneau, O., Mohammadi, B.: Applied Shape Optimization in Fluid. Oxford University Press, New York (2001)zbMATHGoogle Scholar
  46. 46.
    Rabago, J.F.T., Bacani, J.B.: Shape optimization approach to the Bernoulli problem: a Lagrangian formulation. IAENG Int. J. Appl. Math. 47(4), 417–424 (2017)MathSciNetGoogle Scholar
  47. 47.
    Rabago, J.F.T., Bacani, J.B.: Shape optimization approach for solving the Bernoulli problem by tracking the Neumann data: a Lagrangian formulation. Commun. Pure Appl. Anal. 17(6), 2683–2702 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Sokolowski, J., Zolésio, J.-P.: Introduction to Shape Optimization. Springer, Berlin (1991)zbMATHGoogle Scholar
  49. 49.
    Tajani, C., Abouchabaka, J., Samouh, N.: On the existence of solution for an inverse problem. TWMS J. Appl. Eng. Math. 3(1), 33–45 (2013)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Vogelius, M., Xu, J.M.: A nonlinear elliptic boundary value problem related to corrosion modelling. Q. Appl. Math. 56, 479–505 (1998)CrossRefzbMATHGoogle Scholar
  51. 51.
    Wigley, N.M.: On a method to subtract off a singularity at a corner for the Dirichlet or Neumann problem. Math. Comput. 23, 395–401 (1968)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The JJIAM Publishing Committee and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Graduate School of InformaticsNagoya UniversityNagoyaJapan

Personalised recommendations