Matrix method for persistence modules on commutative ladders of finite type

  • Hideto Asashiba
  • Emerson G. EscolarEmail author
  • Yasuaki Hiraoka
  • Hiroshi Takeuchi
Original Paper Area 1


The theory of persistence modules on the commutative ladders \(CL_n(\tau )\) provides an extension of persistent homology. However, an efficient algorithm to compute the generalized persistence diagrams is still lacking. In this work, we view a persistence module M on \(CL_n(\tau )\) as a morphism between zigzag modules, which can be expressed in a block matrix form. For the representation finite case (\(n\le 4\)), we provide an algorithm that uses certain permissible row and column operations to compute a normal form of the block matrix. In this form an indecomposable decomposition of M, and thus its persistence diagram, is obtained.


Persistence modules Commutative ladders Computational topology Algorithms 

Mathematics Subject Classification

68W30 16G20 55N99 



On behalf of all authors, the corresponding author states that there is no conflict of interest. This work was partially supported by JST CREST Mathematics 15656429. H.T. is supported by JSPS KAKENHI Grant number JP16J03138.


  1. 1.
    Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras 1, Techniques of Representation Theory. Cambridge University Press, Cambridge (2006)CrossRefzbMATHGoogle Scholar
  2. 2.
    Carlsson, G., de Silva, V.: Zigzag persistence. Found. Comput. Math. 10, 367–405 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Carlsson, G., de Silva, V., Morozov, D.: Zigzag persistent homology and real-valued functions. Proc. 25th Ann. Symp. Comput. Geom. ACM (2009)Google Scholar
  4. 4.
    Carlsson, G., Zomorodian, A.: The theory of multidimensional persistence. Discrete Comput. Geom. 42(1), 71–93 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chistov, A., Ivanyos, G., Karpinski, M.: Polynomial time algorithms for modules over finite dimensional algebras. In: Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation. ACM (1997)Google Scholar
  6. 6.
    Crawley-Boevey, W.W.: On tame algebras and bocses. Proc. Lond. Math. Soc. 3, 451–483 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete Comput. Geom. 28, 511–533 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Escolar, E.G., Hiraoka, Y.: Persistence modules on commutative ladders of finite type. Discrete Comput. Geom. 55, 100–157 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gabriel, P.: Unzerlegbare Darstellungen I. Manuscripta Math. 6, 71–103 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Green, E.L., Heath, L.S., Struble, C.A.: Constructing homomorphism spaces and endomorphism rings. J. Symb. Comput. 32, 101–117 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lux, K.M., Szőke, M.: Computing decompositions of modules over finite-dimensional algebras. Exp. Math. 16(1), 1–6 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Lux, K.M., Szőke, M.: Computing homomorphism spaces between modules over finite dimensional algebras. Exp. Math. 12(1), 91–98 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Rojter, A.V.: Matrix problems and representations of BOCS’s. Representation Theory I, Lecture Notes in Mathematics 831, pp. 288–324. Springer, Berlin (1980)Google Scholar
  14. 14.
    Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput. Geom. 33(2), 249–274 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The JJIAM Publishing Committee and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Hideto Asashiba
    • 1
  • Emerson G. Escolar
    • 2
    Email author
  • Yasuaki Hiraoka
    • 2
    • 3
  • Hiroshi Takeuchi
    • 4
    • 5
  1. 1.Department of Mathematics, Faculty of ScienceShizuoka UniversityShizuokaJapan
  2. 2.Center for Advanced Intelligence Project, RIKENTokyoJapan
  3. 3.Kyoto University Institute for Advanced StudyKyoto UniversityKyotoJapan
  4. 4.Mathematics Department, Graduate School of ScienceTohoku UniversitySendaiJapan
  5. 5.Japan Society for the Promotion of ScienceTokyoJapan

Personalised recommendations