Advertisement

Wetlands

pp 1–11 | Cite as

Is Leaf Water-Repellency and Cuticle Roughness Linked to Flooding Regimes in Plants of Coastal Wetlands?

  • Luis E. Tellechea-Robles
  • Mario Salazar Ceseña
  • Stephen H. Bullock
  • Rubén D. Cadena-Nava
  • Rodrigo Méndez-AlonzoEmail author
General Wetland Science

Abstract

Owing to periodic inundation, wetland plants may have adapted to minimize leaf gas exchange impairments. Increasing the leaf cuticle surface roughness might contribute to buffer flooding stress, since it might increase both leaf water repellency (i.e. leaf hydrophobicity) and the presence of gas films. Thus, a higher leaf hydrophobicity, as well as an increased cuticle roughness, can be expected in species subject to continuous water-logging. We tested this hypothesis by: 1) measuring the contact angle in the liquid-solid interface on leaves of 52 plant species from three coastal wetlands with different diversity and flooding regime in Baja California, México, and 2) by performing scanning electron microscopic analyses in the most hydrophilic and hydrophobic species. Contrary to our expectations, the highest values of leaf water repellency were found in species from non-flooded areas adjacent to the wetlands, whereas neutral leaf water repellency values were found in species subject to flooding, as indicated by the contact angle measurements (77 to 100°). The most water repellent species presented a striking layer of wax on top of the leaf cuticles, while the lest water repellent species were mostly glabrous, which suggest that the augmentation of wax covering in the cuticle might be responding to other environmental factors, such as irradiation.

Keywords

Contact angle Leaf cuticles Leaf water repellency Scanning electron microscopy Wetland biodiversity 

Notes

Acknowledgements

This work was presented as a M.Sc. thesis in the Posgrado de Ciencias de la Vida, CICESE. We acknowledge F. Alonso for his assistance with SEM analysis, and E. López, S. Díaz de León, and C. Moctezuma for their assistance during field trips. We appreciate the comments of two anonymous reviewers to a previous version of this document.

Funding

This study was funded by CONACYT PN-2015-01-251. LT acknowledges the support of a CONACYT fellowship (337941).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

13157_2019_1190_MOESM1_ESM.docx (180 kb)
ESM 1 (DOCX 180 kb)

References

  1. Anda-Martín BI, Chavira-Silva J, Del Toro-Kobzeff A, Flores-Zavala RA, Jaimes-Lugo ME, González-Acevedo ZI (2013) Características ambientales de La Lagunita de El Ciprés, Mpio. de Ensenada, Baja California y las amenazas a su conservación. Geos 33:1–19Google Scholar
  2. Aryal B, Neuner G (2010) Leaf wettability decreases along an extreme altitudinal gradient. Oecologia 162:1–9CrossRefGoogle Scholar
  3. Bailey-Serres J, Voesenek LACJ (2008) Flooding stress: acclimations and genetic diversity. Annual Review of Plant Biology 59:313–339CrossRefGoogle Scholar
  4. Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202:1–8CrossRefGoogle Scholar
  5. Barthlott W, Neinhuis C, Cutler D, Ditsch F, Meusel I, Theisen I, Wilhelmi H (1998) Classification and terminology of plant epicuticular waxes. Botanical Journal of the Linnean Society 126:237–260CrossRefGoogle Scholar
  6. Blom CWPM, Voesenek LACJ (1996) Flooding: the survival strategies of plants. Trends in Ecology & Evolution 11:290–295Google Scholar
  7. Brewer CA, Nuñez CI (2007) Patterns of leaf wettability along an extreme moisture gradient in western Patagonia, Argentina. International Journal of Plant Sciences 168:555–562CrossRefGoogle Scholar
  8. Brewer CA, Smith WK (1995) Leaf surface wetness and gas exchange in the pond lily Nuphar polysepalum (Nymphaeaceae). American Journal of Botany 82:271–1277CrossRefGoogle Scholar
  9. Brewer CA, Smith WK (1997) Patterns of leaf surface wetness for montane and subalpine plants. Plant, Cell & Environment 20:1–11CrossRefGoogle Scholar
  10. Brewer CA, Smith WK, Vogelmann TC (1991) Functional interaction between leaf trichomes, leaf wettability and the optical properties of water droplets. Plant, Cell & Environment 14:955–962CrossRefGoogle Scholar
  11. Brower JE, Zar JH (1984) Field and laboratory methods for general ecology. Wm. C. Brown Co. Dubuque, IA, USA. 226 pp.Google Scholar
  12. Bullock SH, Escoto-Rodríguez M, Smith SV, Hinojosa A (2011) Carbon flux of an urban system in México. Journal of Industrial Ecology 15:512–526CrossRefGoogle Scholar
  13. Burgess SSO, Dawson TE (2004) The contribution of fog to the water relations of Sequoia sempervirens (D. Don): foliar uptake and prevention of dehydration. Plant, Cell & Environment 27:1023–1034CrossRefGoogle Scholar
  14. Cheng YT, Rodak DE, Wong CA, Hayden CA (2006) Effects of micro-and nano-structures on the self-cleaning behaviour of lotus leaves. Nanotechnology 17:1359–1362CrossRefGoogle Scholar
  15. Colmer TD, Pedersen O (2008) Underwater photosynthesis and respiration in leaves of submerged wetland plants: gas films improve CO2 and O2 exchange. The New Phytologist 177:918–926CrossRefGoogle Scholar
  16. Colmer TD, Voesenek LACJ (2009) Flooding tolerance: suites of plant traits in variable environments. Functional Plant Biology 36:665–681CrossRefGoogle Scholar
  17. Colwell RK, Elsensohn JE (2014) EstimateS turns 20: statistical estimation of species richness and shared species from samples, with non-parametric extrapolation. Ecography 37:609–613CrossRefGoogle Scholar
  18. Ehleringer JR, Björkman O (1978) A comparison of photosynthetic characteristics of Encelia species possessing glabrous and pubescent leaves. Plant Physiology 62:185–190CrossRefGoogle Scholar
  19. Ehleringer J, Björkman O, Mooney HA (1976) Leaf pubescence: effects on absorptance and photosynthesis in a desert shrub. Science 192:376–377CrossRefGoogle Scholar
  20. Eller CB, Lima AL, Oliveira RS (2013) Foliar uptake of fog water and transport belowground alleviates drought effects in the cloud forest tree species, Drimys brasiliensis (Winteraceae). The New Phytologist 199:151–162CrossRefGoogle Scholar
  21. Evert RF (2006) Esau’s plant anatomy. John Wiley and Sons. NJ, USAGoogle Scholar
  22. Fernández V, Bahamonde HA, Peguero-Pina JJ, Gil-Pelegrín E, Sancho-Knapik D, Gil L, Goldbach HE, Eichert T (2017) Physico-chemical properties of plant cuticles and their functional and ecological significance. Journal of Experimental Botany 68:5293–5306CrossRefGoogle Scholar
  23. Garnier E, Cortez J, Billès G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint JP (2004) Plant functional markers capture ecosystem properties during secondary succession. Ecology 85:2630–2637CrossRefGoogle Scholar
  24. Goldsmith GR, Matzke NJ, Dawson TE (2013) The incidence and implications of clouds for cloud forest plant water relations. Ecology Letters 16:307–314CrossRefGoogle Scholar
  25. Goldsmith GR, Bentley LP, Shenkin A, Salinas N, Blonder B, Martin RE, Castro-Ccossco R, Chambi-Porroa P, Díaz S, Enquist BJ, Asner GP, Malhi Y (2017) Variation in leaf wettability traits along a tropical montane elevation gradient. The New Phytologist 214:989–1001CrossRefGoogle Scholar
  26. Holder CD (2012) The relationship between leaf hydrophobicity, water droplet retention, and leaf angle of common species in a semi-arid region of the western United States. Agricultural and Forest Meteorology 152:11–16CrossRefGoogle Scholar
  27. Karthick B, Maheshwari R (2008) Lotus-inspired nanotechnology applications. Resonance 13:1141–1145CrossRefGoogle Scholar
  28. Koch K, Barthlott W (2009) Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials. Philosophical Transactions of the Royal Society A 367(1893):1487–1509CrossRefGoogle Scholar
  29. Kurokawa Y, Nagai K, Hung PD, Shimazaki K, Qu H, Mori Y, Toda Y, Kuroha T, Hayashi N, Aiga S, Itoh JI, Yoshimura A, Sasaki-Sekimoto Y, Ohta H, Shimojima M, Malik AI, Pedersen O, Colmer TD, Ashikari M (2018) Rice leaf hydrophobicity and gas films are conferred by a wax synthesis gene (LGF1) and contribute to flood tolerance. The New Phytologist 218:1558–1569.  https://doi.org/10.1111/nph.15070 CrossRefGoogle Scholar
  30. Law KY, Zhao H (2016) Surface wetting: characterization, contact angle, and fundamentals. Springer International Publishing, Basel, SwitzerlandCrossRefGoogle Scholar
  31. Lohbeck M, Poorter L, Lebrija-Trejos E, Martínez-Ramos M, Meave JA, Paz H, Pérez-García EA, Romero-Pérez E, Tauro A, Bongers F (2013) Successional changes in functional composition contrast for dry and wet tropical forest. Ecology 94:1211–1216CrossRefGoogle Scholar
  32. Martin CE, Willert DV (2000) Leaf epidermal hydathodes and the ecophysiological consequences of foliar water uptake in species of Crassula from the Namib Desert in southern Africa. Plant Biology 2:229–242CrossRefGoogle Scholar
  33. Matos IS, Rosado BH (2016) Retain or repel? Droplet volume does matter when measuring leaf wetness traits. Annals of Botany 117:1045–1052CrossRefGoogle Scholar
  34. Mott KA, O'Leary JW (1984) Stomatal behavior and CO2 exchange characteristics in amphistomatous leaves. Plant Physiology 74:47–51CrossRefGoogle Scholar
  35. Neinhuis C, Barthlott W (1997) Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annals of Botany 79:667–677CrossRefGoogle Scholar
  36. Parolin P, De Simone O, Haase K, Waldhoff D, Rottenberger S, Kuhn U, Kesselmeier J, Kleiss B, Schmidt W, Pledade MTF, Junk WJ (2004) Central Amazonian floodplain forests: tree adaptations in a pulsing system. The Botanical Review 70:357–380CrossRefGoogle Scholar
  37. Pedersen O, Rich SM, Colmer TD (2009) Surviving floods: leaf gas films improve O2 and CO2 exchange, root aeration, and growth of completely submerged rice. The Plant Journal 58:147–156CrossRefGoogle Scholar
  38. Post-Beittenmiller D (1996) Biochemistry and molecular biology of wax production in plants. Annual Review of Plant Biology 47:405–430CrossRefGoogle Scholar
  39. Pritchard DW, De-La-Paz-Vela R, Cabrera-Muro H, Farreras-Sanz S, Morales E (1978) Hidrografía Física Del Estero De Punta Banda Parte 1: Análisis De Datos. Ciencias Marinas 5:1–23CrossRefGoogle Scholar
  40. PRONACOSE (2014) Programa Nacional contra la Sequía y la Desertificación. Programa de medidas preventivas y de mitigación de la sequía. Consejo de Cuenca Baja California y Municipio de San Luis Río Colorado, Sonora. SEMARNAT-CONAGUA Eds, MexicoGoogle Scholar
  41. Sasidharan R, Bailey-Serres J, Ashikari M, Atwell BJ, Colmer TD, Fagerstedt K, Fukao T, Geigenberger P, Hebelstrup KH, Hill RD, Holdsworth MJ, Ismail AM, Licausi F, Mustroph A, Nakazono M, Pedersen O, Perata P, Sauter M, Shih MC, Sorrell BK, Striker GG, van Dongen JT, Whelan J, Xiao S, Visser EJW, Voesenek LAC (2017) Community recommendations on terminology and procedures used in flooding and low oxygen stress research. The New Phytologist 214:1403–1407CrossRefGoogle Scholar
  42. Shepherd T, Griffiths WD (2006) The effects of stress on plant cuticular waxes. The New Phytologist 171:469–499CrossRefGoogle Scholar
  43. Sikorska D, Papierowska E, Szatyłowicz J, Sikorski P, Suprun K, Hopkins RJ (2017) Variation in leaf surface hydrophobicity of wetland plants: the role of plant traits in water retention. Wetlands 37:997–1002CrossRefGoogle Scholar
  44. Teakle NL, Colmer TD, Pedersen O (2014) Leaf gas films delay salt entry and enhance underwater photosynthesis and internal aeration of Melilotus siculus submerged in saline water. Plant, Cell & Environment 37:2339–2349Google Scholar
  45. Voesenek LA, Bailey-Serres J (2015) Flood adaptive traits and processes: an overview. The New Phytologist 206:57–73CrossRefGoogle Scholar
  46. Wasserstein RL, Lazar NA (2016) The ASA's statement on p-values: context, process, and purpose. The American Statistician 70:129–133CrossRefGoogle Scholar
  47. Whittaker RH, Fairbanks CW (1958) A study of plankton copepod communities in the Columbia Basin, southeastern Washington. Ecology 39:46–65CrossRefGoogle Scholar
  48. Winkel A, Colmer TD, Pedersen O (2011) Leaf gas films of Spartina anglica enhance rhizome and root oxygen during tidal submergence. Plant, Cell & Environment 34:2083–2092CrossRefGoogle Scholar
  49. Winkel A, Colmer TD, Ismail AM, Pedersen O (2013) Internal aeration of paddy field rice (Oryza sativa) during complete submergence–importance of light and floodwater O2. The New Phytologist 197:1193–1203CrossRefGoogle Scholar
  50. Winkel A, Visser EJ, Colmer TD, Brodersen KP, Voesenek LA, Sand-Jensen K, Pedersen O (2016) Leaf gas films, underwater photosynthesis and plant species distributions in a flood gradient. Plant, Cell & Environment 39:1537–1548CrossRefGoogle Scholar
  51. Yeats TH, Rose JKC (2013) The formation and structure of plant cuticles. Plant Physiology 163:5–20CrossRefGoogle Scholar

Copyright information

© Society of Wetland Scientists 2019

Authors and Affiliations

  • Luis E. Tellechea-Robles
    • 1
  • Mario Salazar Ceseña
    • 2
  • Stephen H. Bullock
    • 2
  • Rubén D. Cadena-Nava
    • 3
  • Rodrigo Méndez-Alonzo
    • 2
    Email author
  1. 1.Posgrado en Ciencias de la Vida, Centro de Investigación Científica y de Educación Superior de EnsenadaEnsenadaMexico
  2. 2.Departamento de Biología de la Conservación, Centro de Investigación Científica y de Educación Superior de EnsenadaEnsenadaMexico
  3. 3.Centro de Nanociencias y NanotecnologíaUniversidad Nacional Autónoma de MéxicoEnsenadaMexico

Personalised recommendations