Advertisement

Wetlands

pp 1–13 | Cite as

Drivers of Small-Scale Diptera Distribution in Aquatic-Terrestrial Transition Zones of Spring Fens

  • Vendula PoláškováEmail author
  • Jana Schenková
  • Martina Bílková
  • Martina Poláková
  • Vanda Šorfová
  • Marek Polášek
  • Jiří Schlaghamerský
  • Michal Horsák
General Wetland Science

Abstract

Little is known about macroinvertebrate assemblages inhabiting aquatic-terrestrial transition zones, particularly at groundwater-fed wetlands. We studied diversity and vertical distribution of Dipteran assemblages in 27 spring fens characterised by variable groundwater chemistry ranging from acidic to extremely calcium rich. We sampled semiaquatic habitats of aquatic-terrestrial zones and compared their dipteran assemblages with those of truly aquatic habitats in spring patches. Our study showed that semiaquatic habitats create an important part of spring fens, harbouring about one half of dipteran taxa inhabiting spring fens, with a similar proportion of spring specialists as in aquatic habitats. Dipteran abundance decreased gradually with sediment depth, being the highest in the uppermost layer. However, vertical distribution of Diptera differed among fens of different mineral richness, with the average depth of dipteran counts decreasing from calcareous to mineral-poor Sphagnum fens. Calcium carbonate incrustations in calcareous fens might block migration to deeper horizons and therefore may cause high sensitivity of dipteran assemblages to water level fluctuations induced by various factors, such as climate changes and water abstraction. Semiaquatic habitats contribute significantly to the species richness of dipteran assemblages by providing additional microhabitats in the peripheral parts of spring fens, which are rare habitats of high conservation value.

Keywords

Spring fens Diptera Vertical distribution Semiaquatic habitats Mineral richness Tufa incrustations 

Notes

Acknowledgements

We would like to thank Stanislav Němejc for help with the field sampling and Ondřej Hájek for producing the map. The study was supported by the research projects of the Czech Science Foundation (project no. GA15-15548S and GA16-03881S) and by Masaryk University’s institutional support for Ph.D. students.

References

  1. Ayres E, Wall DH, Adams BJ, Barrett JE, Virginia RA (2007) Unique similarity of faunal communities across aquatic–terrestrial interfaces in a polar desert ecosystem soil-sediment boundaries and faunal community. Ecosystems 10:523–535.  https://doi.org/10.1007/s10021-007-9035-x CrossRefGoogle Scholar
  2. Barquín J, Scarsbrook M (2008) Management and conservation strategies for Coldwater springs. Aquatic Conservation 18:580–591.  https://doi.org/10.1002/aqc.884 CrossRefGoogle Scholar
  3. Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography 19:134–143.  https://doi.org/10.1111/j.1466-8238.2009.00490.x CrossRefGoogle Scholar
  4. Baselga A, Orme CDL (2012) Betapart: an R package for the study of beta diversity. Methods in Ecology and Evolution 3:808–812.  https://doi.org/10.1111/j.2041-210X.2012.00224.x CrossRefGoogle Scholar
  5. Bedford BL, Godwin KS (2003) Fens of the United States: distribution, characteristics, and scientific connection versus legal isolation. Wetlands 23:608–629. https://doi.org/10.1672/0277-5212(2003)023[0608:FOTUSD]2.0.CO;2Google Scholar
  6. Bojková J, Schenková J, Horsák M, Hájek M (2011) Species richness and composition patterns of clitellate (Annelida) assemblages in the treeless spring fens: the effect of water chemistry and substrate. Hydrobiologia 667:159–171.  https://doi.org/10.1007/s10750-011-0634-3 CrossRefGoogle Scholar
  7. Briones MJI, Ineson P, Piearce TG (1997) Effects of climate change on soil fauna; responses of enchytraeids, Diptera larvae and tardigrades in a transplant experiment. Applied Soil Ecology 6:117–134.  https://doi.org/10.1016/S0929-1393(97)00004-8 CrossRefGoogle Scholar
  8. Cantonati M, Gerecke R, Bertuzzi E (2006) Springs of Alps – sensitive ecosystems to environmental change: from biodiversity assessments to long-term studies. Hydrobiologia 562:59–96.  https://doi.org/10.1007/s10750-005-1806-9 CrossRefGoogle Scholar
  9. Danks HV (1971) Overwintering of some north temperate and arctic Chironomidae II: Chironomid biology. Canadian Entomologist 103:1875–1910.  https://doi.org/10.4039/Ent1031875-12 CrossRefGoogle Scholar
  10. Dawson TP, Berry PM, Kampa E (2003) Climate change impacts on freshwater wetland habitats. Journal for Nature Conservation 11:25–30.  https://doi.org/10.1078/1617-1381-00031 CrossRefGoogle Scholar
  11. Doblas-Miranda E, Sánchez-Piñero F, González-Megías A (2009) Vertical distribution of soil macrofauna in an arid ecosystem: are litter and belowground compartmentalized habitats? Pedobiologia 52:361–373.  https://doi.org/10.1016/j.pedobi.2008.11.006 CrossRefGoogle Scholar
  12. ESRI (2003) Arcview GIS, Version 8.3. Environmental Systems Research Institute Inc., Redlands. www.esri.com. Accessed 17 May 2019
  13. Fischer J, Fischer F, Schnabel S, Wagner R, Bohle HW (1998) Die Quellfauna der hessischen Mittelgebirgsregion. Besiedlungstruktur, Anpassungmechanismen und Habitatbindung der Makroinvertebraten am Beispiel von Quellen aus dem rheinischen Schiefergebirge. In: Botosaneanu L (ed) Studies in Crenobiology: the biology of springs and Springbrooks. Backhuys Publishers, Leiden, pp 183–200Google Scholar
  14. Frouz J (1999) Use of soil dwelling Diptera (Insecta, Diptera) as bioindicators: a review of ecological requirements and response to disturbance. Agriculture, Ecosystems and Environment 74:167–186.  https://doi.org/10.1016/S0167-8809(99)00036-5 CrossRefGoogle Scholar
  15. Frouz J, Ali A, Frouzova J, Lobinske RJ (2004) Horizontal and vertical distribution of soil macroarthropods along a spatio-temporal moisture gradient in subtropical Central Florida. Environmental Entomology 33:1282–1295.  https://doi.org/10.1603/0046-225X-33.5.1282 CrossRefGoogle Scholar
  16. Hájek M, Horsák M, Hájková P, Dítě D (2006) Habitat diversity of central European fens in relation to environmental gradients and an effort to standardise fen terminology in ecological studies. Perspect in Plant Ecology, Evolution and Systematics 8:97–114.  https://doi.org/10.1016/j.ppees.2006.08.002 CrossRefGoogle Scholar
  17. Hájek M, Roleček J, Cottenie K, Kintrová K, Horsák M, Poulíčková A, Hájková P, Fránková M, Dítě D (2011) Environmental and spatial controls of biotic assemblages in a discrete semiterrestrial habitat: comparison of organisms with different dispersal abilities sampled in the same plots. Journal of Biogeography 38:1683–1693.  https://doi.org/10.1111/j.1365-2699.2011.02503.x CrossRefGoogle Scholar
  18. Hartmann A, Goldscheider N, Wagener T, Lange J, Weiler M (2014) Karst water resources in a changing world: review of hydrological modeling approaches. Reviews of Geophysics 52:218–242.  https://doi.org/10.1002/2013RG000443 CrossRefGoogle Scholar
  19. Horsák M, Cernohorsky N (2008) Mollusc diversity patterns in central European fens: hotspots and conservation priorities. Journal of Biogeography 35:1215–1225.  https://doi.org/10.1111/j.1365-2699.2007.01856.x CrossRefGoogle Scholar
  20. Horsák M, Hájek M, Dítě D, Tichý L (2006) Modern distribution patterns of snails and plants in the Western Carpathian spring fens: is it a result of historical development? Journal of Molluscan Studies 73:53–60.  https://doi.org/10.1093/mollus/eyl024 CrossRefGoogle Scholar
  21. Horsák M, Rádková V, Syrovátka V, Bojková J, Křoupalová V, Schenková J, Zajacová J (2015) Drivers of aquatic macroinvertebrate richness in spring fens in relation to habitat specialization and dispersal mode. Journal of Biogeography 42:2112–2121.  https://doi.org/10.1111/jbi.12569 CrossRefGoogle Scholar
  22. Kampstra P (2008) Beanplot: a boxplot alternative for visual comparison of distributions. Journal of Statistical Software, Code Snippets 28:1–9 Available from: http://cran.r-project.org/web/packages/beanplot/beanplot.pdf. Accessed 17 May 2019Google Scholar
  23. Karlin EF, Bliss LC (1984) Variation in substrate chemistry along microtopographical and water-chemistry gradients in peatlands. Canadian Journal of Botany 62:142–153.  https://doi.org/10.1139/b84-023 CrossRefGoogle Scholar
  24. Křoupalová V, Bojková J, Schenková J, Pařil P, Horsák M (2011) Small-scale distribution of aquatic macroinvertebrates in two spring fens with different groundwater chemistry. International Review of Hydrobiology 96:235–256.  https://doi.org/10.1002/iroh.201111307 CrossRefGoogle Scholar
  25. Křoupalová V, Opravilová V, Bojková J, Horsák M (2013) Diversity and assemblage patterns of microorganisms structured by the groundwater chemistry gradient in spring fens. Annales de Limnologie - International Journal of Limnology 49:207–223.  https://doi.org/10.1051/limn/2013056 CrossRefGoogle Scholar
  26. Lindegaard C, Brodersen KP, Wiberg-Larsen P, Skriver J (1998) Multivariate analyses of macrofaunal communities in Danish springs and springbrooks. In: Botosaneanu L (ed) Studies in Crenobiology: the biology of springs and Springbrooks. Backhuys Publishers, Leiden, pp 201–220Google Scholar
  27. Malmer N (1986) Vegetational gradients in relation to environmental conditions in northwestern European mires. Canadian Journal of Botany 64:375–383.  https://doi.org/10.1139/b86-054 CrossRefGoogle Scholar
  28. Mitchell EAD, Buttler A, Grosvernier P, Rydin H, Albinsson C, Greenup AL, Heijmans MMPD, Hoosbeek MR, Saarinen T (2000) Relationships among testate amoebae (protozoa), vegetation and water chemistry in five Sphagnum-dominated peatlands in Europe. New Phytologist 145:95–106.  https://doi.org/10.1046/j.1469-8137.2000.00550.x CrossRefGoogle Scholar
  29. Nadvornyj VG (1983) Vertical migration and life activity of the soil mesofauna in the central part of the Ukrainian forest steppe. Pedobiologia 25:49–67Google Scholar
  30. Naiman RJ, Decamps H, Pollock M (1993) The role of riparian corridors in maintaining regional biodiversity. Ecological Applications 3:209–221.  https://doi.org/10.2307/1941822 CrossRefGoogle Scholar
  31. Omelková M, Syrovátka V, Křoupalová V, Rádková V, Bojková J, Horsák M, Zhai M, Helešic J (2013) Dipteran assemblages of spring fens closely follow the gradient of groundwater mineral richness. Canadian Journal of Fisheries and Aquatic Sciences 70:689–700.  https://doi.org/10.1139/cjfas-2013-0026 CrossRefGoogle Scholar
  32. R Development Core Team (2015) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 17 May 2019
  33. Rádková V, Bojková J, Křoupalová V, Schenková J, Syrovátka V, Horsák M (2014) The role of dispersal mode and habitat specialization in metacommunity structuring of aquatic macroinvertebrates at isolated spring fens. Freshwater Biology 59:2256–2267.  https://doi.org/10.1111/fwb.12428 CrossRefGoogle Scholar
  34. Rádková V, Polášková V, Bojková J, Syrovátka V, Horsák M (2017) Environmental filtering of aquatic insects in spring fens: patterns of species-specific responses related to specialist-generalist categorization. Hydrobiologia 797:159–170.  https://doi.org/10.1007/s10750-017-3169-4 CrossRefGoogle Scholar
  35. Römbke J, Sousa JP, Schouten T, Riepert F (2006) Monitoring of soil organisms: a set of standardized field methods proposed by ISO. European Journal of Soil Biology 42:61–64.  https://doi.org/10.1016/j.ejsobi.2006.07.016 CrossRefGoogle Scholar
  36. Ruff H, Maier G (2000) Calcium carbonate deposits reduce predation pressure on Gammarus fossarum from salamander larvae. Freshwater Biology 43:99–105.  https://doi.org/10.1046/j.1365-2427.2000.00527.x CrossRefGoogle Scholar
  37. Schenková J, Bílková M, Horsák M (2016) The response of Clitellata (Annelida) to environmental gradients in spring fens. Limnologica 57:73–82.  https://doi.org/10.1016/j.limno.2016.01.004 CrossRefGoogle Scholar
  38. Schenková J, Bílková M, Polášková V, Horsák M, Schlaghamerský J (2018) Variation of Clitellata (Annelida) assemblages related to water saturation in groundwater-dependent wetlands. Hydrobiologia 823:49–65.  https://doi.org/10.1007/s10750-018-3695-8 CrossRefGoogle Scholar
  39. Sherfy MH, Kirkpatrick RL, Richkus KD (2000) Benthos core sampling and vertical chironomid vertical distribution: implication for assessing shorebird food availability. Wildlife Society Bulletin 28:124–130 http://www.jstor.org/stable/4617293. Accessed 17 May 2019Google Scholar
  40. Smith KGV (1989) An introduction to the immature stages of British flies. Handbooks for the identification of British insects, part 14, vol. 10. Royal Entomological Society of London, London, pp 280. https://www.royensoc.co.uk/sites/default/files/Vol10_Part14_MainText.pdf. Accessed 17 May 2019
  41. Staudacher K, Füreder L (2007) Habitat complexity and invertebrates in selected alpine springs. International Review of Hydrobiology 92:465–479.  https://doi.org/10.1002/iroh.200610988 CrossRefGoogle Scholar
  42. Strommer JL, Smock LA (1989) Vertical distribution and abundance of invertebrates within the sandy substrate of a low-gradient headwater stream. Freshwater Biology 22:263–274.  https://doi.org/10.1111/j.1365-2427.1989.tb01099.x CrossRefGoogle Scholar
  43. Takács V, Tokeshi M (1994) Spatial distribution of two chironomid species in the bottom sediment of Lough Neagh, Northern Ireland. Aquatic Insects 16:125–131.  https://doi.org/10.1080/01650429409361546 CrossRefGoogle Scholar
  44. Topp W, Simon M, Kautz G, Dworschak U, Nicolini F, Prückner S (2001) Soil fauna of a reclaimed lignite open-cast mine of the Rhineland: improvement of soil quality by surface pattern. Ecological Engineering 17:307–322.  https://doi.org/10.1016/S0925-8574(00)00147-6 CrossRefGoogle Scholar
  45. van Diggelen R, Middleton B, Bakker J, Grootjans A, Wassen M (2006) Fens and floodplains of the temperate zone: present status, threats, conservation and restoration. Applied Vegetation Science 9:157–162.  https://doi.org/10.1111/j.1654-109X.2006.tb00664.x CrossRefGoogle Scholar
  46. van Everdingen RO (1991) Physical, chemical and distributional aspects of Canadian springs. The Memoirs of the Entomological Society in Canada 155:7–28.  https://doi.org/10.4039/entm123155007-1 CrossRefGoogle Scholar
  47. Vu VQ (2011) A Ggplot2 based Biplot. Version: 0.55. http://github.com/vqv/ggbiplot. Accessed 17 May 2019
  48. Wagner R, Fisher J, Schnabel S (1998) The dipteran community of central European springs, a summary. In: Botosaneanu L (ed) Studies in Crenobiology: the biology of springs and Springbrooks. Backhuys Publishers, Leiden, pp 157–166Google Scholar
  49. Ward JV, Tockner K, Schiemer F (1999) Biodiversity of floodplain river ecosystems: ecotones and connectivity. Regulated Rivers: Research and Management 15:125–139 http://www.academia.edu/12808790/Biodiversity_of_floodplain_river_ecosystems_ecotones_and_connectivity1. Accessed 17 May 2019CrossRefGoogle Scholar
  50. Wassen MJ, Olde Venterink H, Lapshina ED, Tanneberger F (2005) Endangered plants persist under phosphorus limitation. Nature 437:547–550.  https://doi.org/10.1038/nature03950 CrossRefGoogle Scholar
  51. Wickham H (2007) Reshaping data with the reshape package. Journal of Statistical Software 21:1–20.  https://doi.org/10.18637/jss.v021.i12 CrossRefGoogle Scholar
  52. Zollhöfer JV, Brunke M, Gonser T (2000) A typology of springs in Switzerland by integrating habitat variables and fauna. Archiv für Hydrobiologie, Supplement 121:349–376 https://www.researchgate.net/publication/260120448_A_spring_typology_integrating_habitat_variables_and_fauna. Accessed 17 May 2019Google Scholar

Copyright information

© Society of Wetland Scientists 2019

Authors and Affiliations

  • Vendula Polášková
    • 1
    Email author
  • Jana Schenková
    • 1
  • Martina Bílková
    • 1
  • Martina Poláková
    • 1
  • Vanda Šorfová
    • 1
  • Marek Polášek
    • 1
  • Jiří Schlaghamerský
    • 1
  • Michal Horsák
    • 1
  1. 1.Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic

Personalised recommendations