, Volume 38, Issue 5, pp 1033–1044 | Cite as

Diversity of Rotifera (Monogononta) and Egg Ratio of Selected Taxa in the Canals of Xochimilco (Mexico City)

  • Jorge Jiménez-Contreras
  • S. NandiniEmail author
  • S. S. S. Sarma
Original Research


Rotifer dominance in wetland ecosystems is due to their ability to survive and reproduce in the presence of cyanobacteria, ability to occupy different niches and elimination of competing crustaceans by predation. In addition, quality and quantity of food and physical and chemical variables affect the rotifer abundances in these waterbodies. Seasonal variations in food also affect the rotifer body size and egg ratio (ER). We studied the species richness, diversity, female egg ratio, morphometry, and density of rotifer species from four sites of Lake Xochimilco that have been influenced by agriculture, urban waste, and tourism. Zooplankton samples were collected on a monthly basis over one year (February 2005 to January 2006) and we measured selected physical and chemical variables including water depth, Secchi transparency, temperature, pH, conductivity, alkalinity, hardness, dissolved oxygen, biological oxygen demand-5 day test (BOD5), nitrates and nitrites and orthophosphates. We recorded 81 rotifer species, representing 27 genera and 17 families. The Shannon-Wiener diversity varied between 0.5 and 3.8 during the study and was highest in the rainy season. The ER did not show a significant relationship between ecological conditions and any rotifer species, indicating nearly stable physical, chemical and biological conditions in which rotifers are able to reproduce throughout the year.


Rotifers Morphometry Shallow Lake Phytoplankton Seasonal variation 



JJC thanks CONACyT for its support (Exp. 66806). SN and SSSS thank CONACyT for fellowships (S.N.I.) (20520 and 18723, respectively). We thank PAPIIT (UNAM) IN210205, IN219218 and IN214618 for financial support.


  1. Ahlgren G, Lundstedt L, Brett M, Forsberg C (1990) Lipid composition and food quality of some freshwater phytoplankton for cladoceran zooplankters. Journal of Plankton Research 12(4):809–818CrossRefGoogle Scholar
  2. American Public Health Association (APHA) (1995) Standard Methods, 19th edn. American Public Health Association, Washington, DCGoogle Scholar
  3. Bielañska-Grajner I (1995) Influence of temperature on morphological variation in populations of Keratella cochlearis (Gosse) in Rybnik Reservoir. Hydrobiologia 313(314):139–146CrossRefGoogle Scholar
  4. Brooks JL, Dodson SI (1965) Predation, body size and composition of plankton. Science 150(3692):28–35CrossRefGoogle Scholar
  5. Cieplinski A, Obertegger U, Weisse T (2018) Life history traits and demographic parameters in the Keratella cochlearis (Rotifera, Monogononta) species complex Hydrobiologia. CrossRefGoogle Scholar
  6. Conde-Porcuna JM, Morales-Baquero R, Cruz-Pizarro L (1993) Effectiveness of the caudal spine as a defense mechanism in Keratella cochlearis. Hydrobiologia 255(256):283–287CrossRefGoogle Scholar
  7. Connell JH (1978) Diversity in tropical rain forest and coral reefs. Science 199(4335):1302–1310CrossRefGoogle Scholar
  8. de Bernardi R (1984) Methods for the estimation of zooplankton abundance. In: Downing JA, Rigler FH (eds) A manual of methods for the assessment of secondary productivity in fresh water. Blackwell Scientific Publications, London, pp 59–86Google Scholar
  9. Derry AM, Hebert PDN, Prepas EE (2003) Evolution of rotifers in saline and subsaline lakes: a molecular phylogenetic approach. Limnology and Oceanography 48:675–685CrossRefGoogle Scholar
  10. Devetter M, Sed’a J (2003) Rotifer fecundity in relation to components of microbial food web in a eutrophic reservoir. Hydrobiologia 504:167–175CrossRefGoogle Scholar
  11. Diéguez M, Modenutti B, Queimaliños C (1998) Influence of abiotic and biotic factors on morphological variation of Keratella cochlearis (Gosse) in a small Andean lake. Hydrobiologia 387:289–294CrossRefGoogle Scholar
  12. Duy NDQ, Francis DS, Southgate PC (2017) The nutritional value of live and concentrated micro-algae for early juveniles of sandfish, Holothuria scabra. Aquaculture 473:97–104CrossRefGoogle Scholar
  13. Eckert B, Walz N (1998) Zooplankton succession and thermal stratification in the polymictic shallow Müggelsee (Berlin, Germany): a case for the intermediate disturbance hypothesis? Hydrobiologia 387:199–206CrossRefGoogle Scholar
  14. Edmondson WT (1960) Reproductive rates of rotifers in natural populations. Memorie dell’Istituto Italiano di Idrobiologia 12:21–77Google Scholar
  15. Edmondson TW (1965) Reproductive rate of planktonic rotifers as related to food and temperature in nature. Ecological Monographs 35(1):61–111CrossRefGoogle Scholar
  16. Eloranta P (1982) Notes on the morphological variation of the rotifer species Keratella cochlearis (Gosse) s. l. in one eutrophic pond. Journal of Plankton Research 4:299–312CrossRefGoogle Scholar
  17. Enríquez García CE, Nandini S, Sarma SSS (2003) Food type effects on the population growth patterns of littoral rotifers and cladocerans. Acta Hydrochimica et Hydrobiologica 31:120–133CrossRefGoogle Scholar
  18. Enríquez García C, Nandini S, Sarma SSS (2009) Seasonal dynamics of zooplankton in Lake Huetzalin, Xochimilco (Mexico City, Mexico). Limnologica 39:283–291CrossRefGoogle Scholar
  19. Fernández-Reiriz MJ, Labarta U (1996) Lipid classes and fatty acid composition of rotifers (Brachionus plicatilis) fed two algal diets. Hydrobiologia 330:73–79CrossRefGoogle Scholar
  20. Fontaneto D, De Smet WH, Ricci C (2006) Rotifers in saltwater environments, re­evaluation of an inconspicuous taxon. Journal of the Marine Biological Association of the United Kingdom 86:623–656CrossRefGoogle Scholar
  21. Fromm O (2000) Ecological structure and functions of biodiversity as elements of its total economic value. Environmental and Resource Economics 16:303–328CrossRefGoogle Scholar
  22. García-García G, Nandini S, Sarma SSS, Martínez-Jerónimo F, Jiménez-Contreras J (2012) Impact of chromium and aluminium pollution on the diversity of zooplankton: a case study in the Chimaliapan wetland (RAMSAR Site) (Lerma basin, Mexico). Journal of Environmental Science and Health, Part A 47(4):534–547CrossRefGoogle Scholar
  23. Garza-Mouriño G, Silva-Briano M, Nandini S, Sarma SSS, Castellanos-Páez ME (2005) Morphological and morphometrical variations of selected rotifer species in response to predation: a seasonal study of selected brachionid species from Lake Xochimilco (Mexico). Hydrobiologia. 546:169–179CrossRefGoogle Scholar
  24. Gayosso-Morales MA, Nandini S, Martínez-Jeronimo FF, Sarma SSS (2017) Effect of organic and inorganic turbidity on the zooplankton community structure of a shallow waterbody in Central Mexico (Lake Xochimilco, Mexico). Journal of Environmental Biology 38(6) (Special Issue):1183–1196CrossRefGoogle Scholar
  25. Geng H, Xi Y, Hu H (2003) Effects of food component and concentration on population growth, body size, and egg size of freshwater rotifer, Bracionus rubens. Ying Uong Sheng Tai Xue Bao 14(5):753–756Google Scholar
  26. Gilbert JJ (1967) Asplanchna and posterolateral spine induction in Brachionus calyciflorus. Arch Hydrobiologia 64:1–62Google Scholar
  27. Gilbert JJ (2011) Temperature, kairomones and phenotypic plasticity in the rotifer Keratella tropica (Apstein), 1907. Hydrobiologia 678:79–190CrossRefGoogle Scholar
  28. Gilbert JJ (2017) Non-genetic polymorphisms in rotifers: environmental and endogenous controls, development, and features for predictable or unpredictable environments. Biological Reviews 92:964–992CrossRefGoogle Scholar
  29. Green J (1960) Zooplankton of the river Sokoto. The Rotifera Journal of Zoology 135:491–523Google Scholar
  30. Green J (1987) Keratella cochlearis (Gosse) in Africa. Hydrobiologia 147:3–8CrossRefGoogle Scholar
  31. Green J (1998) Strategic variation of egg size in Keratella cochlearis. Hydrobiologia 387(388):301–310CrossRefGoogle Scholar
  32. Green J (2005) Morphological variation of Keratella cochlearis (Gosse) in a backwater of the River Thames. Hydrobiologia 546:189–196CrossRefGoogle Scholar
  33. Green J (2007) Morphological variation of Keratella cochlearis (Gosse) in Myanmar (Burma) in relation to zooplankton community structure. Hydrobiologia 593:5–12CrossRefGoogle Scholar
  34. Gulati RD (1990) Structural and grazing responses of zooplankton community to biomanipulation of some Dutch water bodies. Hydrobiologia 200/201:99–118CrossRefGoogle Scholar
  35. Gulati RD, DeMott WR (1997) The role of food quality for zooplankton: remarks on the state-of-the-art, perspectives and priorities. Freshwater Biology 38:753–768CrossRefGoogle Scholar
  36. Halbach U (1970) Die Ursachen der temporalvariation von Brachionus calyciflorus Pallas (Rotatoria). Oecologia 4:262–318CrossRefGoogle Scholar
  37. Harper D (1992) Eutrophication of freshwaters, principles, problems and restoration. Chapman and Hall, LondonCrossRefGoogle Scholar
  38. Hillbricht-Ilkowska A (1983) Morphological variation of K. cochlearis in Lake Biwa, Japan. Hydrobiologia 14:297–305CrossRefGoogle Scholar
  39. Hu H, Xi Y, Geng H (2002) Effects of food concentration on population growth, body size, and egg size of freshwater rotifer Brachionus angularis. Ying Uong Sheng Tai Xue Bao 13(7):875–878Google Scholar
  40. Jiménez-Contreras J, Sarma SSS, Merino-Ibarra M, Nandini S (2009) Seasonal changes in the rotifer (Rotifera) diversity from a tropical high altitude reservoir (Valle de Bravo, Mexico). Journal of Environmental Biology 30(2):191–195Google Scholar
  41. Kennari AA, Ahmadifard N, Kapourchali MF, Seyfabadi J (2008) Effect of two microalgae concentrations on body size and egg size of the rotifer Brachionus calyciflorus. Biologia 63:407–411CrossRefGoogle Scholar
  42. King CE (1967) Food, age, and the dynamics of a laboratory population of rotifers. Ecology 48:111–128CrossRefGoogle Scholar
  43. Korstad J, Neyts A, Danielsen T, Overrein I, Olsen Y (1995) Use of swimming speed and egg ratio as predictors of the status of rotifer cultures in aquaculture. Hydrobiologia 313:395–398CrossRefGoogle Scholar
  44. Koste W (1978) Rotatoria. Die Rädertiere Mitteleuropas. Ein Bestimmungswerk begründet von Max Voigt. Vol. 1, Textband Vol. 2, Tafelband, StuttgartGoogle Scholar
  45. Lampert W, Sommer U (2007) Limnoecology: the ecology of lakes and streams, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  46. Lewis WM Jr (2000) Basis for the protection and management of tropical lakes. Lakes & Reservoirs. Research and Management 5:35–48Google Scholar
  47. Lindström K, Pejler B (1975) Experimental studies on the seasonal variation of the rotifer Keratella cochlearis (Gosse). Hydrobiologia 46:191–197CrossRefGoogle Scholar
  48. Martínez-Arroyo A, Járegui E (2001) On the environmental role of urban lakes in Mexico City. Urban Ecosystems 4:145–166CrossRefGoogle Scholar
  49. Monakov AV (2003) Feeding of freshwater invertebrates. Ghent, Belgium, p 373Google Scholar
  50. Nandini S, Rao TR (1998) Somatic and population growth in selected cladoceran and rotifer species offered the cyanobacterium Microcystis aeruginosa as food. Aquatic Ecology 31:283–298CrossRefGoogle Scholar
  51. Nandini S, Ramírez-García P, Sarma SSS (2005) Seasonal variations in the species diversity of planktonic rotifers in Lake Xochimilco, Mexico. Journal of Freshwater Ecology 20:287–294CrossRefGoogle Scholar
  52. Nandini S, Sarma SSS, Amador-López RJ, Bolaños-Muñoz S (2007) Population growth and body size in five rotifer species in response to variable food concentration. Journal of Freshwater Ecology 22:1–10CrossRefGoogle Scholar
  53. Obertegger U, Cieplinski A, Fontaneto D, Papakostas S (2017) Mitonuclear discordance as a confounding factor in the DNA taxonomy of monogonont rotifers. Zoologica Scripta 47:122–132CrossRefGoogle Scholar
  54. Pavón-Meza EL, Sarma SSS, Nandini S (2007) Combined effects of temperature, food (Chlorella vulgaris) concentration and predation (Asplanchna girodi) on the morphology of Brachionus havanaensis (Rotifera). Hydrobiologia 593:95–101CrossRefGoogle Scholar
  55. Pourriot R (1973) Rapports entre la température, la taille des adultes, la longueur des oeufs et le taux de développement embryonnaire chez Brachionus calyciflorus Pallas (Rotifére). Annales d’Hydrobiologie 1:103–115Google Scholar
  56. Radwan S, Popiloek B (1989) Percentage of rotifers in spring zooplankton in lakes of different trophy. Hydrobiologia 186(187):235–238CrossRefGoogle Scholar
  57. Roncarati A, Meluzzi A, Acciarri S, Tallarico N, Melotti N (2004) Fatty acid composition of different microalgae strains (Nannochloropsis sp., Nannochloropsis oculata (droop) Hibberd, Nannochloris atomus Butcher and Isochrysis sp.) according to the culture phase and the carbon dioxide concentration. Journal of the World Aquatic Society 35:401–411CrossRefGoogle Scholar
  58. Salari A, Zakaria M, Nielsen CC, Boyce MS (2014) Quantifying tropical wetlands using field surveys, spatial statistics and remote sensing. Wetlands 34:565–574CrossRefGoogle Scholar
  59. Salas HJ, Martino P (1991) A simplified phosphorus trophic state model for warm-water tropical lakes. Water Research 25:341–350CrossRefGoogle Scholar
  60. Sarma SSS, Rao TR (1987) Effect of food level on body size and egg size in a growing population of the rotifer Brachionus patulus Müller. für Hydrobiologie 111(1):245–253Google Scholar
  61. Sarma SSS, Nandini S, Ramírez-García P, Cortés-Muñoz JE (2000) New records of brackish water Rotifera and Cladocera from Mexico. Hidrobiológica 10(2):121–124Google Scholar
  62. Sarma SSS, Gulati RD, Nandini S (2005) Factors affecting egg-ratio in planktonic rotifers. Hydrobiologia 546:361–373CrossRefGoogle Scholar
  63. Schöll K, Kiss A (2008) Spatial and temporal distribution patterns of zooplankton assemblages (Rotifera, Cladocera, Copepoda) in the water bodies of the Gemenc Floodplain (Duna-Dráva National Park, Hungary). Opuscula Zoology Budapest 39:65–76Google Scholar
  64. Segers H (1996) The biogeography of littoral Lecane Rotifera. Hydrobiologia 323:169–197CrossRefGoogle Scholar
  65. Snell TW, Carrillo K (1984) Body size variation among strains of the rotifer, Brachionus plicatilis. Aquaculture 37:359–367CrossRefGoogle Scholar
  66. Sokal RR, Rohlf FJ (1993) Biometry. 3rd edn. W. H. Freeman and Company, San FranciscoGoogle Scholar
  67. Sommer U, Gliwicz ZM, Lampert W, Duncan A (1986) The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv für Hydrobiologie 106(4):433–471Google Scholar
  68. Starkweather PL (1980) Aspects of the feeding behavior and trophic ecology of suspension-feeding rotifers. Hydrobiologia 73:63–72CrossRefGoogle Scholar
  69. Sushchik NN, Gladyshev MI, Makhutova ON, Kalachova GS, Kravchuk ES, Ivanova EA (2004) Associating particulate essential fatty acids of the x3 family with phytoplankton species composition in a Siberian reservoir. Freshwater Biology 49:1206–1219CrossRefGoogle Scholar
  70. Torres-Orozco REB, Zanatta SA (1998) Species composition, abundance and distribution of zooplankton in a tropical eutrophic lake: Lake Catemaco, México. Revista de Biología Tropical 46(2):285–296Google Scholar
  71. Vázquez-Sánchez A, Reyes-Vanegas G, Nandini S, Sarma SSS (2014) Diversity and abundance of rotifers during an annual cycle in the reservoir Valerio Trujano (Tepecoacuilco, Guerrero, Mexico). Inland Waters 4(3):293–302CrossRefGoogle Scholar
  72. Wainwright PC (1991) Ecomorphology: experimental functional anatomy for ecological problems. American Zoologist 31:680–693CrossRefGoogle Scholar
  73. Wallace RL, Snell WT, Nogrady T (2006) Rotifera biology, ecology and systematics. SPB. Backhuys Publishers, LeidenGoogle Scholar
  74. Walz N, Sarma SSS, Benker U (1995) Egg size in relation to body size in rotifers: an indication of reproductive strategy? Hydrobiologia 313(314):165–170CrossRefGoogle Scholar
  75. Wehr JD, Sheath RG, Kociolek JP (2015) Freshwater algae of North America: ecology and classification. Elsevier Science, San DiegoGoogle Scholar

Copyright information

© Society of Wetland Scientists 2018

Authors and Affiliations

  • Jorge Jiménez-Contreras
    • 1
  • S. Nandini
    • 1
    Email author
  • S. S. S. Sarma
    • 1
  1. 1.Laboratorio de Zoología Acuática, Edificio Unidad de MorfofisiologíaUniversidad Nacional Autónoma de MéxicoTlalnepantlaMexico

Personalised recommendations