Carbonates and Evaporites

, Volume 34, Issue 4, pp 1799–1813 | Cite as

Facies distribution, depositional environment, and diagenetic features of the Permian Jamal Formation, Central Iran basin

  • Fatemeh Aghajani
  • Mohsen AlealiEmail author
Original Article


The Permian Jamal Formation characterized as one of the most significant successions in the Central Iran basin and constitutes a thick section (as much as 180 m) of limestone, dolomitic limestone, and dolomite in southeastern Kharu village in Tang-e Sarve area. The facies analysis of Jamal Formation leads to the identification of 11 microfacies, which are attributable to shoal, lagoon, and tidal flat environments. Results from petrographic evidence as well as facies analysis demonstrate that the depositional environment of Jamal Formation in the studied area (Kharu village, East Tabas) exhibits the characteristics of a homoclinal carbonate ramp platform with the gentle slope. This platform is mainly composed of tidal flat, lagoon, and shoal sub-environments. According to facies frequency analysis, the lagoon environment accounts for the highest abundance of facies (48%), whereas tidal flat environment shows the least abundance (17%). Bioturbation, micritization, cementation, dolomitization, neomorphism, physical and chemical compaction, and fracturing are the most important diagenetic features.


Jamal Formation Central Iran basin Facies analysis Depositional environments Diagenetic features 



The Department of Geology, Science and Research Branch, Islamic Azad University, Tehran, Iran supported this study.


  1. Aghanabati A (1977) Etudgeologique de la region de Kalmard (W. Tabas). Geological Survey of Iran, Iran, pp 51–63Google Scholar
  2. Aghanabati A (2004) Geology of Iran: Tehran. Geol Surv Iran 586:19–30 (in Persian) Google Scholar
  3. Alavi M (1991) Sedimentary and structural characteristics of the Paleo-Tethys remnants in northeastern Iran. Geol Soc Ame Bull 103:983–992CrossRefGoogle Scholar
  4. Alavi M, Vazir H, Seyed-Emami K, Lasemi Y (1997) The Triassic and associated rocks of the Nakhlak and Aghdarband areas in central and northeastern Iran as remnants of the southern Turanian active continental margin. Geol Soc Am Bull 109:1563–1575CrossRefGoogle Scholar
  5. Aleali M, Rahimpour-Bonab H, Moussavi-Harami R, Jahani D, Asadi-Eskandar A (2013) Depositional environment and sequence stratigraphy of the Kangan Formation in South Pars field. Geosciences 22:65–74Google Scholar
  6. Alsharhan AS, Whittle L (1995) Carbonate-evaporite sequences of the Late Jurassic—southern and southwestern Arabian Gulf. AAPG Bull 79:1608–1630Google Scholar
  7. Alsharhan AS, Kendall CG, St C (2003) Holocene coastal carbonates and evaporites of the southern Arabian Gulf and their ancient analogue. Earth Sci Rev 61:191–243CrossRefGoogle Scholar
  8. Arefifard S, Davydov VI (2005) Petrography and geochemistry of Permian Strata in Tabas and Kalmard regions, Eastern-Central Iran. Geophys Res Abstr 7(00484):2005Google Scholar
  9. Arefifard S, Isaacson P (2009) Microbiostratigraphy of Permian deposits in central Iran. EGU General Assembly conference, 19–24 April, 2009, Vienna, Austria, p 1699Google Scholar
  10. Arefifard S, Isaacson PE (2011) Permian sequence stratigraphy in east-central Iran: microplate records of Peri-Tethyan and Peri-Gondwanan events. Stratigraphy 8(1):61–83Google Scholar
  11. Bachmann M, Hirsch F (2006) Lower Cretaceous carbonate platform of the eastern Levant (Galilee and the Golan Heights): stratigraphy and second-order sea-level change. Cretac Res 27:487–512CrossRefGoogle Scholar
  12. Bathurst RGC (1966) Boring algae, micrite envelopes and lithification of molluscan biosparites. Geol J 5:15–32CrossRefGoogle Scholar
  13. Bathurst RGC (1989) Early diagenesis in carbonate sediments. In: Parker A, Sellwood BW (eds) Sediment diagenesis. Reidel, Dordrecht, pp 345–377Google Scholar
  14. Bosence DWJ, Gibbons KA, Le Heron DP, Morgan WA, Pritchard T, Vining BA (2015) Microbial carbonates in space and time: implications for global exploration and production. Geol Soc Lond Spec Publ 418:1–15CrossRefGoogle Scholar
  15. Bottjer DJ, Droser ML (1994) The history of Phanerozoic bioturbation. In: Donovan SK (ed) Palaeobiology of trace fossils. Wiley, Chichester, pp 155–176Google Scholar
  16. Brandano M, Frezza V, Tomassetti L, Pedley M (2010) Facies analysis and paleoenvironmental interpretation of the Late Oligocene Attard member (Lower Coralline Limestone Formation), Malta. Sedimentology 56:1138–1158CrossRefGoogle Scholar
  17. Bricker OP (1973) Carbonate cements. John Hopkins University Studies in Geology, Baltimore, pp 19–376Google Scholar
  18. Bromley RG (1994) The palaeoecology of bioerosion. In: Donovan SK (ed) The paleobiology of trace fossils. Belhaven, London, pp 133–154Google Scholar
  19. Bromley RG (1996) Trace fossils: biology, taphonomy and applications, 2nd edn. Kluwer, DordrechtCrossRefGoogle Scholar
  20. Brunet MF, Granath JW, Wilmsen M (2009) South Caspian to Central Iran basins. Geol Soc Lond Spec Publ 312:1–6CrossRefGoogle Scholar
  21. Burchette TP, Wright VP (1992) Carbonate ramp depositional systems. In: Sellwood BW (ed) Ramps and Reefs. Sedimentary Geology, vol 79. Elsevier, Amsterdam, pp 3–57Google Scholar
  22. Choquette PW, James NP (1987) Diagenesis, 12, Diagenesis in limestones, 3, The deep burial environment. Geosci Can 14:3–35Google Scholar
  23. Davidov V, Arefifard S (2007) Permian fusulinid fauna of Peri-Gondwana affinity from the Kalmard region, east-central Iran and its significance for tectonics and paleogeography. Palaeontol Electron 10(2):40Google Scholar
  24. Demicco RV, Hardie LA (1994) Sedimentary structures and early diagenetic features of shallow marine carbonate deposits, vol 1. SEPM, USA, p 265Google Scholar
  25. Dercourt J, Ricou LE, Vriel Ynck B (1993) Atlas Tethys paleoenvironmental Maps. Gauthier-Villars, Paris, p 307Google Scholar
  26. Dunham RJ, (1962) Classification of carbonate rocks according to depositional texture. In: Ham ED (ed) Classification of carbonate rocks: A Symposium: American Association of Petroleum Geologists. Memoir 1, 108–121Google Scholar
  27. Embry AF, Klovan JE (1971) A late Devonian reef tract on Northeastern Banks Island, Northwest Territories. Bull Can Pet Geol 19(4):730–781Google Scholar
  28. Ernst A, Senowbari-Daryan B, Hamedani A (2006a) Middle Permian Bryozoa from the Lakaftari area, central Iran. Geodiversitas 28:543–590Google Scholar
  29. Ernst A, Senowbari-Daryan B, Rashidi K (2006b) Lower Permian Bryozoa of the Jamal Formation from Bagh-e Vang (Shotori Mountains, northeast Iran). Facies 52:627–635CrossRefGoogle Scholar
  30. Ernst A, Senowbari-Daryan B, Rashidi K (2008) Permian Bryozoa from the Jamal Formation of Shotori mountains (northeast Iran). Rev Paleobiol 27(2):395–408Google Scholar
  31. Ernst A, Senowbari-Daryan B, Rashidi K (2009a) Rhabdomesid and cystoporid bryozoans from the Permian of Deh-e Mohammad, Shotori mountains (northeastern Iran). Geobios 42(2):133–140CrossRefGoogle Scholar
  32. Ernst A, Senowbari-Daryan B, Rashidi K (2009b) Bryozoa from the Surmaq Formation (Permian) of the Hambast mountains, south of Abadeh, central Iran. Facies 55:595–608CrossRefGoogle Scholar
  33. Flugel E (2010) Microfacies analysis of limestone: analysis. Springer, Berlin, p 976Google Scholar
  34. Flügel E (1991) Triassic and Jurassic marine calcareous algae: a critical review. In: Riding R (ed) Calcareous algae and stromatolites. Springer, Berlin, pp 481–503CrossRefGoogle Scholar
  35. Geel T (2000) Recognition of stratigraphic sequences in carbonate platform and slope deposits: empirical models based on microfacies analysis of Paleogene deposits in southeastern Spain. Paleogeogr Palaeoclimatol Palaeoecol 155:211–238CrossRefGoogle Scholar
  36. Harris PM, Kendall CG, St C, Lerche J (1985a) Carbonate cementation: a brief review. In: Schneidermann M, Harris PM (eds) Carbonate cements. Society of Economic Paleontologists and Mineralogists, Tulsa, pp 79–95CrossRefGoogle Scholar
  37. Harris PM, Moore CH, Wilson JL (1985b) Carbonate depositional environments. Modern and ancient. Part 2: carbonate platforms, vol 80. Colorado School of Mines Quart, USA, pp 1–60Google Scholar
  38. Hessami K, Nilforoushan F, Talbot CJ (2006) Active deformation within the Zagros mountains deduced from GPS measurements. J Geol Soc 163:143–148CrossRefGoogle Scholar
  39. Hird K, Tucker ME (1988) Contrasting diagenesis of two Carboniferous oolites from South Wales: a tale of climatic influence. Sedimentology 35:587–602CrossRefGoogle Scholar
  40. James NP (1991) Diagenesis of carbonate sediments, notes to accompany a short course. Geological Society of Australia, p 101Google Scholar
  41. James NP, Choquette PW (1983) Diagenesis 6 limestone: the sea floor digenetic environment. Geosci Can 10:162–179Google Scholar
  42. James NP, Choquette PW (1990a) Limestones—the meteoric diagenetic environment. In: Morrow DW (ed) Macillreath IA, vol 11. Diagenesis Geoscience Canada, Canada, pp 161–194Google Scholar
  43. James NP, Choquette PW (1990b) Limestones—the burial diagenetic environments. In: Macillreath IA, Morrow DW (eds) Diagenesis, vol 4. Geoscience Canada Reprint, Canada, pp 75–111Google Scholar
  44. James NP, Jones B (2015) Origin of carbonate sedimentary rocks. American Geophysical Union, Washington, p 464Google Scholar
  45. Jenny-Deshusses C (1983) Le Permian de l´Elborz Central et Oriental (Iran): Stratigraphie et micropaleontologie (Foraminifères et Algues). Unpubl. These, no. 2130, University de Geneva, Section des sciences de la terre, Geneva, p 265Google Scholar
  46. Jones SJ (2015) Introducing sedimentology. Dunedin Academic Press, Edinburgh, p 96Google Scholar
  47. Kahler F (1974) Iranische Fusuliniden, vol 117. Jahrbuch für Geologie, Wien, pp 75–107Google Scholar
  48. Kahler F (1977) Fusuliniden aus der Mediterranische-Iranische Gebiet. Neues Jahrbuch fûr Geologie und Paleontologie 4:199–216Google Scholar
  49. Kendall AC (1975) Post-compactional calcitization of molluscan aragonite in a Jurassic limestone from Saskatchewan, Canada. J. Sediment Petrol 45:399–404CrossRefGoogle Scholar
  50. Kobluk DR, Risk MJ (1977) Calcification of exposed filaments of endolithic algae, micrite envelope formation and sediment production. J Sediment Petrol 47:517–528Google Scholar
  51. Korngreen D, Benjamini C (2010) The epicontinental subsiding margin of the Triassic in Northern Israel, North Arabian Plate. Sediment Geol 228:14–45CrossRefGoogle Scholar
  52. Lasemi Y, Jahani D, Amin-Rasouli H, Lasemi Z (2012) Ancient carbonate tidalites. In: Davis RA, Dalrymple RW (eds) Principles of tidal sedimentology. Springer, Heidelberg, pp 567–607CrossRefGoogle Scholar
  53. Leven E Ja, Taheri A (2003) Carboniferous-Permian stratigraphy and fusulinids of East Iran. Gzhelian and Asselian deposits of the Ozbak-Kuh region. Riv Ital Paleontol Stratigr 109:21–38Google Scholar
  54. Leven E Ja, Vaziri Moghaddam H (2004) Carboniferous–Permian stratigraphy and fusulinids of eastern Iran, The Permian in the Bagh-e- Vang section (Shirgesht area). Riv Ital Paleontol Stratigr 110:441–465Google Scholar
  55. Leven EJA, Gorgij MN (2006) Upper Carboniferous-Permian stratigraphy and fusulinids from the Anarak region, central Iran. Russ J Earth Sci 8:25CrossRefGoogle Scholar
  56. Logan BW, Rezak R, Ginsburg RN (1964) Classification and environmental significance of algal stromatolites. J Geol 72:68–83CrossRefGoogle Scholar
  57. Longman MW (1980) Carbonate diagenetic textures from near surface diagenetic environments. Am Assoc Petrol Geol Bull 64:461–487Google Scholar
  58. Maliva RG (1995) Recurrent neomorphic and cement microtextures from different diagenetic environments, quaternary to late neogene carbonates, Great Bahama Bank. Sediment Geol 97:1–7CrossRefGoogle Scholar
  59. Meyers WJ (1991) Calcite cement stratigraphy: an overview. In: Barker CE, Kopp OC (eds) Luminescence microscopy and spectroscopy: qualitative and quantitative applications, vol 25. SEPM Short Course, USA, pp 133–148Google Scholar
  60. Middleton GV, Church MJ, Coniglio M, Hardie LA, Longstaffe FJ (2003) Encyclopedia of sediments and sedimentary rocks. Springer, Netherlands, p 821Google Scholar
  61. Moore CH (1989) Carbonate diagenesis and porosity. Elsevier, Amsterdam, p 338Google Scholar
  62. Moore CH, Wade WJ (2013) Carbonate reservoirs: porosity, evolution and diagenesis in a sequence stratigraphic framework: porosity evolution and diagenesis in a sequence stratigraphic framework, 2nd edn. Elsevier, Amsterdam, p 369Google Scholar
  63. Mousavi SM (2017) Mapping seismic moment and b-value within the continental-collision orogenic-belt region of the Iranian Plateau. J Geodyn 103(2017):26–41CrossRefGoogle Scholar
  64. Naimi-Ghassabian N, Khatib MM, Nazari H, Heyhat MR (2015) Present-day tectonic regime and stress patterns from the formal inversion of focal mechanism data, in the North of Central-East Iran Blocks. J Afr Earth Sci 111:113–126CrossRefGoogle Scholar
  65. Nogole sadat MA (1978) Les zones de decrochement et les virgations structurales en Iran. Consequences des resultants de l’analyse structurales de la region de Qom. Unpubl. Ph. D. Thesis, University Scientifique et Medicate de Gernoble, p 201Google Scholar
  66. Palma RM, Lopez- Gomez J, Piethe RD (2007) Oxfordian ramp system (La Manga formation) in the Bardas Blances area (Mendoza Province) Neuquen Basin Argentina: facies and depositional sequences. Sedimentary Geology 195:113–134CrossRefGoogle Scholar
  67. Partoazar H (1992) Changsingian stage in east Iran. Discovery of genus Colaniella and its biostratigraphic importance. Geol Surv Iran Geosci Period 3:44–53 (in Farsi with English abstract) Google Scholar
  68. Partoazar M (1995) Permian deposits in Iran. Geol Surv Iran 22:340 (in Persian) Google Scholar
  69. Partoazar M, Hamdi B, Aghanabati SA (2014) New approach on biostratigraphy of Permian deposits of Jamal formation in Bagh Vang section, Shirgesht area (Central Iran). Geopersia 4(2):141–154Google Scholar
  70. Patterson WP, Walter LM (1994) Syndepositional diagenesis of modern platform carbonates: evidence from isotopic and minor element data. Geology 22:127–130CrossRefGoogle Scholar
  71. Pierson BJ, Shinn EA (1985) Cement distribution and carbonate mineral stabilization in Pleistocene limestones of Hogsty Reef, Bahamas. In: Schneidermann N, Harris PM (eds) Carbonate cements, Special Publication 36. Society of Economic Paleontologists and Mineralogists, Tulsa, pp 153–168CrossRefGoogle Scholar
  72. Pingitore NE (1976) Vadose and phreatic diagenesis: processes, products and their recognition in corals. J Sediment Petrol 46:985–1006CrossRefGoogle Scholar
  73. Pomar L (2001) Types of carbonate platforms: a genetic approach. Basin Res 13:313–334CrossRefGoogle Scholar
  74. Pratt BR (2010) Peritidal carbonates. In: James NP, Dalrymple RG (eds) Facies models, 3rd edn. Geological Association of Canada, St. John’s (in press) Google Scholar
  75. Rankey E, Berkeley A (2012) Holocene carbonate tidal flats. In: Davis RA Jr, Dalrymple RW (eds) Principles of tidal sedimentology. Springer, Netherlands, pp 507–535CrossRefGoogle Scholar
  76. Rashidi K, Senowbari-Daryan B (2010) Dasycladales from the Permian Jamal Formation of Shotori mountains, northeast Iran. Facies 56:111–137CrossRefGoogle Scholar
  77. Read JF (1985) Carbonate platform facies models. Am Assoc Pet Geol Bull 69:1–21Google Scholar
  78. Reid RP, Macintyre IG, Post JE (1992) Micritized skeletal grains in northern Belize lagoon: a major source of Mg–calcite mud. J Sediment Petrol 62:145–156Google Scholar
  79. Reilinger R, McClusky S, Vernant P, Lawrence S (2006) GPS constraints on continental deformation in the Africa–Arabia–Eurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res 111:B05411. CrossRefGoogle Scholar
  80. Riding R (1999) The term stromatolite: towards an essential definition. Lethaia 32:321–330CrossRefGoogle Scholar
  81. Riding R (2000) Microbial carbonates: the geological record of calcified bacterial–algal mats and biofilms. Sedimentology 47:179–214CrossRefGoogle Scholar
  82. Rigby JK, Senowbari-Daryan B, Hamedani A (2005) First reported occurrence of wewokellid sponges (Calcarea, Heteractinida) from the Permian of central Iran. Facies 51:516–521CrossRefGoogle Scholar
  83. Ruban DA, Al-Husseini MI, Iwasaki Y (2007) Review of Middle East Paleozoic plate tectonics. GeoArabia 12(3):35–56Google Scholar
  84. Rutner A, Nabavi M, Hajian J (1968) Geology of the shirgesht area (Tabas area, East Iran), Tehran. Geol Surv Iran Rep 4:133Google Scholar
  85. Sandberg P (1985) Aragonite cements and their occurrence-in ancient limestones. In: Schneidermann N, Harris PM (eds) Carbonate cements, vol 36. Society of Economic Paleontologists and Mineralogists, Tulsa, pp 33–58CrossRefGoogle Scholar
  86. Schneidermann N, Harris PM (1985) Carbonate cements, vol 36. Society of Economic Paleontologists and Mineralogists, Tulsa, p 397CrossRefGoogle Scholar
  87. Scoffin TP (1988) The environments of production and deposition of calcareous sediments on the shelf west of Scotland. Sediment Geol 60:107–134CrossRefGoogle Scholar
  88. Scotese CR, Langford RP (1995) Pangea and the paleogeography of the Permian. In: Scholl PA, Peryt TM, Ulmer-Scholl DS (eds) The Permian of Northern Pangea. Springer, Berlin, pp 3–19CrossRefGoogle Scholar
  89. Sengor AC (1984) The Cimmeride orogenic system and the tectonics of Eurasia. Boulder Geol Soc Am Spec Pap 19:82Google Scholar
  90. Senowbari-Daryan B, Hamedani A (2002) First report of the occurence of Amblysiphonella, a thalamid sponge from the Permian of Iran and description of A. iranica n. sp. from central Iran. Rev Paleobiol Genève 21(2):795–801Google Scholar
  91. Senowbari-Daryan B, Rashidi K (2010) The codiacean genera Anchicodium Johnson, 1946 and Iranicodium nov. gen. from the Permian Jamal Formation of Shotori mountains, northeast Iran. Rivista Italiana di Paleontologia e Stratigraphia 116(1):3–21Google Scholar
  92. Senowbari-Daryan B, Rashidi K (2011) Lercaritubus Problematicus Flugel, Senowbari-Daryan and di Stefano and Vangia Telleri (Flugel): two problematic organisms from the Permian Jamal Formation of Shotori mountains, northeast Iran. Rivista Italiana di Paleontologia e Stratigrafia 117(1):105–114Google Scholar
  93. Senowbari-Daryan B, Rashidi K, Hamedani A (2006) Sponge assemblage of the Permian reefal limestones of Kuh-e Bagh-e Vang, Shotori mountains (East Iran). Geol Carp 56(6):381–406Google Scholar
  94. Senowbari-Daryan B, Hamedani A, Rashidi K (2007) Sponges from the permian of hambast mountains, south of Abadeh, Central Iran. Facies 53(4):575–614CrossRefGoogle Scholar
  95. Senowbari-Daryan B, Rashidi K, Saberzadeh B (2011) Dasycladalean green algae and some problematic algae from the Upper Triassic of the Nayband Formation (northeast Iran). Geol Carpa 62(6):501–517CrossRefGoogle Scholar
  96. Shinn EA (1968) Burrowing in recent lime sediments of Florida and the Bahamas. J Palaeontol 42:879–894Google Scholar
  97. Shinn EA (1983) Tidal flat environment. In: Scholle PA, Bebout DG, Moore CH (eds) Carbonate depositional environments. American Association Petroleum Geologists, Tulsa, pp 173–210Google Scholar
  98. Shinn EA (1986) Modern carbonate tidal flats: their diagnostic features, vol 81. Colorado School of Mines Quarterly, Colorado, pp 7–35Google Scholar
  99. Sotohian F (2016) Microfacies and sequence stratigraphy of the Permian rocks in Kuh-Jamal section (Tabas). J Curr Res Sci 1:477–486Google Scholar
  100. Stocklin J (1977) Structural correlation of the Alpine ranges between Iran and Central Asia. Memoires hors-series de la Societé géologique de France 8:333–353Google Scholar
  101. Stocklin J, Nabavi MH (1969) Geologic map of the Boshruyeh, Scale 1:250 000, No. J7. Geological Survey of IranGoogle Scholar
  102. Stocklin J, Eftekhar-Nezhad J, Hushmand-Zadeh A (1965) Geology of the Shotori range (Tabas area, East Iran). Geol Surv Iran Rep 3:69 (in Persian) Google Scholar
  103. Taheri A (2002) Stratigraphy of Permian sediments in Tabas area. Ph.D. thesis, Univ. Isfahan, p 157 (in Persian) Google Scholar
  104. Takin M (1972) Iranian geology and continental drift in the Middle East. Nature 235:147–150CrossRefGoogle Scholar
  105. Torsvik TH, Cocks LRM (2004) Earth geography from 400 to 250 Ma: a palaeomagnetic, faunal and facies review. J Geol Soc Lond 161:555–572CrossRefGoogle Scholar
  106. Tucker ME (2001) Sedimentary petrology, 3rd edn. Blackwell, Oxford, p 262Google Scholar
  107. Tucker ME, Bathurst RGC (1990) Carbonate diagenesis. Int Assoc Sedimento Repr Ser 1:312Google Scholar
  108. Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell, Oxford, p 482CrossRefGoogle Scholar
  109. Warren JK (2006) Evaporites: sediments, resources and hydrocarbons: Springer, Berlin, p 1041CrossRefGoogle Scholar
  110. Wilson JL (1975) Carbonate facies in geological history. Springer, Berlin, p 471CrossRefGoogle Scholar
  111. Wray JL (1977) Calcareous algae. Elsevier, New York, p 185Google Scholar
  112. Yarahmadzahi H (2011) Fusulinids biostratigraphy and sequence stratigraphy of Lower Permian deposits in Central Iran (Isfahan, Shareza, Abadeh and Yazd areas), PhD thesis, Science and Research Branch, Islamic Azad University, Tehran, Iran (in Persian)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Earth Sciences, Science and Research BranchIslamic Azad University (IAU)TehranIran

Personalised recommendations