Advertisement

Phosphate genesis and concentration a response to sea level fluctuation in shallow marine environments of the lower Eocene deposits in the southern Tethyan margin: case study of the Gafsa Basin, southern Tunisia

  • Abdel Majid MessadiEmail author
  • Besma Mardassi
  • Jamel Abdennaceur Ouali
  • Jamel Touir
Original Article
  • 28 Downloads

Abstract

Detailed analysis of the Chouabine Formation exposed in the western part of the Gafsa basin, southern Tunisia shows the presence of six principal facies. Vertical and lateral evolution of facies showed a gradual transition from intertidal to circatidal environments summarized in a carbonate ramp model: homoclinal ramp under the control of synsedimentary faults and, episodically, swept by upwelling currents. Phosphogenesis indicates that early diagenetic organic matter degradation can be a source of authigenic phosphate during the first stage of transgression. The concentration of phosphate was under the control of hydrodynamic processes as testified by angular unconformities, erosive surfaces, current structures and reworked clasts. Phosphate genesis seems under the control of sea level changes. It begins with the upper LST where diagenetic processes allow the dissolution of fauna remains (bones and fish teeth) and a prelude precipitation of authigenic phosphates. During the TST stage, transgression was associated with upwelling currents, which enable faunal blooming. Phosphatization, which requires suboxic conditions, occurs in shells or in troughs, preferentially in infratidal to circatidal environments. During the HST, the shift of the sea level leads to a sea level fall and, thus, to a basinward migration of depositional environments. Accordingly, infratidal environment becomes intertidal. A detailed analysis of facies in the field shows the fossilization of current structures (cross-bedding structures capped by planar laminations and sheet deposits). Tidal currents sweep the deposits and allow phosphate concentration and deposition in troughs. The model proposed does not necessitate major rises and falls of the relative sea level to produce economic phosphorite, but emphasizes the interplay of both autocyclic and allocyclic controls to form phosphate strata during the highstand system tract.

Keywords

Chouabine Lower Eocene Phosphogenesis Sequential stratigraphy Facies analysis Cyclicity 

Notes

Acknowledgements

The authors would like to thank the personnel of the Civil Engineering department at National Engineering School of Sfax (ENIS), the Physics Department of the Faculty of Sciences of Bizerte and the personnel of the Higher Institute of Biotechnology of Sfax for their technical support. The authors extend their thanks to Ms Ahmed Ben Rguiga, English professor at the FSEG (Faculty of Economics and Management of Sfax), for patiently proofreading the present version of this paper.

References

  1. Abdessalam NB (1978) Etude palynologique et micropaléontologique de la sériephosphatée du bassin de Gafsa-Metlaoui (Tunisie). Application à la compréhension des mécanismes de la phosphatogenese. Ph.D. Thesis. Univ Paris VI, FranceGoogle Scholar
  2. Abdulkader MA, Rushdi S, Mamdouh A (2007) Sequence stratigraphy and evolution of Eshidiyya phosphorite platform, southern Jordan. Sediment Geol 198(3–4):209–219 (ISSN 0037-0738) Google Scholar
  3. Aigner T (1985a) Biofabrics as dynamic indications in nummulite accumulation. J Sediment Petrol 55(1):131–134Google Scholar
  4. Aigner T (1985b) Storm depositional systems: dynamic stratigraphy in modern and ancient shallow marine sequences. Lect Notes Earth Sci 3:174 (Springer, Berlin) Google Scholar
  5. Baioumy H, Tada R (2004) Origin of late Cretaceous phosphorites in Egypt. Cretac Res 26:261–275CrossRefGoogle Scholar
  6. Barber RT, Smith RL (1981) Coastal upwelling ecosystems. In: Longhurst AR (ed) Analysis of marine ecosystems. Academic Press, New York, pp 31–68Google Scholar
  7. Béji Sassi A (1999) Les phosphates dans les bassins paléogènes de la partie méridionale de l’Axe Nord-Sud. (Tunisie). Ph.D. Thesis., Univ. TunisGoogle Scholar
  8. Ben Haj Ali M, Kadri A, Zagrarni MF, Gaied ME (2002) Les unités lithostratigraphiques de l’Eocène en Tunisie: evolution latérale et actualisation de la nomenclature-. Notes Du Serv Éologique De Tunisie 69:53–73Google Scholar
  9. Benjamini H (1984) Stratigraphy of the Eocene of the Arava Valley (eastern and southern Negev, southern Israel). Israel J Earth Sci 33:167–177Google Scholar
  10. Bolle MP, Adatte T, Keller G, Von Salis K, Burns S (1999) The Paleocene–Eocene transition in the southern Tethys (Tunisia): climatic and environmental fluctuations. Bull La Société Géologique Fr 170(5):661–680Google Scholar
  11. Boujo A (1976) Contribution à l’étude géologique du gisement de phosphate Crétacé–Eocène des Ganntour (Maroc occidental). Sciences Géologiques, Mémoire, p 43Google Scholar
  12. Boulila S, Galbrun B, Hinnov L, Collin PY (2008a) High-resolution cyclostratigraphic analysis from magnetic susceptibility in a lower Kimmeridgian (upper Jurassic) marl-limestone succession (La Meouge, Vocontian Basin, France). Sediment Geol 203:54–63CrossRefGoogle Scholar
  13. Boulila S, Hinnov L, Galbrun B, Collin PY (2008b) Orbital calibration of the lower Kimmeridgian (southeastern France): implications for geochronology and global sequence stratigraphy. Terra Nova 20:455–462CrossRefGoogle Scholar
  14. Boulila S, Hinnov L, Huret E, Collin PY, Galbrun B, Fortwengler D (2008c) Astronomical calibration of the lower Oxfordian (Terres Noires formation, Vocontian Basin, France): consequences of revising late Jurassic time scale. Earth Planet Sci Lett 276:40–51CrossRefGoogle Scholar
  15. Boulila S, De Rafelis M, Hinnov L, Gardin S, Galbrun B, Collin PY (2010a) Orbitally forced climate and sea-level changes in the paleoceanic Tethyan domain (marl-limestone alternations, early Kimmeridgian, SE, France. Palaeogeogr Palaeoceanogr Palaeoclimatol 292:57–70CrossRefGoogle Scholar
  16. Boulila S, Galbrun B, Hinnov L, Collin PY, Ogg J, Fortwengler D, Marchand D (2010b) Milankovitch and sub-Milankovitch forcing of the Oxfordian (late Jurassic) Terres Noires formation (SE France) and global implications. Basin Res 22:717–732CrossRefGoogle Scholar
  17. Burollet PF (1956) Contribution à l’etude stratigraphique de la Tunisie centrale. Ph.D Thesis Paris. Annales des Mines et de la Geologie, Tunis. n_18, 350 ppGoogle Scholar
  18. Castany G (1951) Etude géologique de l’Atlas tunisien oriental. Ann. Min. et Géol., Tunisie, 8. Thèse Doct. Ès-Sc., ParisGoogle Scholar
  19. Chaabani F (1978) Les phosphorites de la coupe type de Foum Selja Metlaoui(Tunisie). Une série sédimentaire séquentielle à évaporite du Paléogène. Ph.D. Thesis. Louis Pasteur Univ. FranceGoogle Scholar
  20. Chaabani F (1995) Dynamique de la partie orientale du bassin de Gafsa au crétacé et au paléogène. Etude minéralogique et géochimique de la série phosphatée éocène-Tunisie Méridionale. Ph.D. Thesis. Manar II Univ, TunisiaGoogle Scholar
  21. Chaabani F, Ounis A (2008) Sequence stratigraphy and depositional environment of phosphorite deposits evolution: case of the Gafsa basin, Tunisia. In: conference abstract at the international. Geological. Cong. OsloGoogle Scholar
  22. Christopher SS (2009) Cenozoic stratigraphy of the Sahara, northern Africa. J Afr Earth Sci 53:89–121 (ISSN 1464-343X) CrossRefGoogle Scholar
  23. Clocchiatti R, Sassi S (1972) Découverte de témoins d’un volcanisme paléocène à éocène dans le bassin phosphaté de Métlaoui (Tunisie Méridionale). C.R. Acad Sci Paris 247:513–517Google Scholar
  24. De Wever P, Baudin F (1996) Paleogeography of radiolarite and organic-rich deposits in Mesozoic Tethys. Geol Rundsch 85:310–326CrossRefGoogle Scholar
  25. Dunham RJ (1962) Classification of carbonate rocks according to their depositional texture. In: Ham WE (ed) Classification of carbonate rocksda symposium, vol 1. American Association of Petroleum Geologists Memoir, Tulsa, pp 108–121Google Scholar
  26. Flügel E (2004) Microfacies of carbonate rocks: analysis, interpretation and application. Springer, Berlin, p 976CrossRefGoogle Scholar
  27. Fournie D (1978) Nomenclature litho stratigraphique des séries du crétacé supérieur au tertiaire de Tunisie. Bull Cent Rech Prod Elf Aquitaine 2(1):97–148Google Scholar
  28. Galfati I, Sassi AB, Zaier A, Bouchardon JL, Bilal E, Joron JL, Sassi S (2010) Geochemistry and mineralogy of Paleocene–Eocene Oum El Khecheb phosphorites (Gafsa-Metlaoui Basin) Tunisia. Geochem J 44:189–210CrossRefGoogle Scholar
  29. Garnit H, Bouhlel S, Barca D, Chtara C (2012) Application of LA-ICP-MS to sedimentary phosphatic particles from Tunisian phosphorite deposits: insights from trace elements and REE into paleo-depositional environments. Chem Erde 72:127–139CrossRefGoogle Scholar
  30. Glenn CR, Arthur MA (1990) Anatomy and origin of a Cretaceous phosphorite–greensand giant, Egypt. Sedimentology 37:123–154CrossRefGoogle Scholar
  31. Glenn CR, Föllmi KB, Riggs SR, Baturin GN, Grimm KA, Trappe J, Abed AM, Galli-Oliver C, Garrison RE, Ilyin AV, Jehl C, Rohrlich V, Sadaqah RMY, Schidlowski M, Sheldon RE, Siegmund H (1994) P and phosphorites: sedimentology and environments of formation. Eclogae Geologicae Helveticae 87:747–788Google Scholar
  32. Grimm KA (2000) Stratigraphic condensation and the redeposition of economic phosphorite: allostratigraphy of Oligo-Miocene shelfal sediments, Baja California Sur. Mexico. In: Marine Authigenesis: From Global to Microbial, pp.325–347.  https://doi.org/10.2110/pec.00.66.0325
  33. Haj Ahmed A, Tlili A, Zalat A, Jeddoui Y (2014) Fossil diatoms from endogangue of the Ypresian phosphatic pellets of the Gafsa-Metlaoui basin: implication on the origin of biogenic silica and depositional environment. Arab J Geosci 8:1077–1087.  https://doi.org/10.1007/s12517-013-1253-2 CrossRefGoogle Scholar
  34. Henchiri M (2007) Sedimentation, depositional environment and diagenesis of Eocene biosiliceous deposits in Gafsa basin, southern Tunisia. J Afr Earth Sci 49:187–200CrossRefGoogle Scholar
  35. Henchiri M, Slim-S’himi N (2006) Silicification of sulfate evaporites and their carbonate replacements in Eocene marine sedimentary rocks, Tunisia: two diagenetic trends. Sedimentology 53:1135–1159CrossRefGoogle Scholar
  36. Hilgen FJ, Iaccarino S, Krijgsman W, Villa G, Langereis CG, Zachariasse WJ (2000) The global boundary stratotype and point (GSSP) of the Messinian stage (uppermost Miocene). Episodes 23:1–6Google Scholar
  37. Hilgen FJ, Abdul Aziz H, Krijgsman W, Raffi I, Turco E (2003) Integrated stratigraphy and astrochronology of the Serravallian and lower Tortonian at Monte dei Corvi (middle–upper Miocene, northern Italy). Paleogeogr Palaeoclimatol Palaeoecol 199:229–264CrossRefGoogle Scholar
  38. Huret H, Thiesson J, Tabbagh A, Galbrun B, Collin PY (2011) Improvement of cyclostratigraphic studies by processing of high resolution magnetic susceptibility logging: example of PEP1002 borehole (Bure, Meuse, France). Compte Rendus Geosci 343:379–386CrossRefGoogle Scholar
  39. Hüsing SK, Hilgen FJ, Aziz HA, Krijgsman W (2007) Completing the Neogene geological time scale between 8.5 and 12.5 Ma. Earth Planet Sci Lett 253:340–358CrossRefGoogle Scholar
  40. Issawi B (1989) A review of Egyptian Late Cretaceous phosphate deposits. In: Notholt AJG, Sheldon RP, Davidson DF (eds) Phosphate deposits of the world. Cambridge University Press, Cambridge, pp 187–193Google Scholar
  41. Jamoussi F, Bedir M, Boukadi N, Kharbachi S, Zargouni F, Lopez-Galindo A, Paquet H (2003) Clay mineralogical distribution and tectono-eustatic control in the Tunisian margin basins. Comptes rendus Geosci 335:175–183CrossRefGoogle Scholar
  42. Jasinski SM (2003) Phosphate rock. US Geological Survey Minerals Yearbook. US Geological Survey, Washington, pp 56.1–56.5Google Scholar
  43. Karoui-Yaakoub N (2006) Effet du réchauffement climatique global sur le comportement des foraminifères benthiques de l’intervalle de passage Paléocène-Eocène de la coupe d’Elles (Tunisie). Rev Paléobiologie 25(2):575–591 (Genève) Google Scholar
  44. Karoui-Yaakoub N, M’barek-Jemaï MB, Cherni R (2011) Le passage Paléocène-Eocène au nord de la Tunisie (Jebel Kharouba): foraminifères planctoniques, minéralogie et environnement de dépôt. Rev Paléobiologie 30(1):105–121Google Scholar
  45. Kelly DC, Zachos JC, Bralower TJ, Schellenberg SA (2005) Enhanced terrestrial weathering/runoff and surface ocean carbonate production during the recovery stages of the Paleocene–Eocene thermal maximum. Paleoceanography 20:Pa4023CrossRefGoogle Scholar
  46. Kocsis L, Ounis A, Baumgartner C, Pirkenseer C, Harding I, Adatte A, Chaabani F, Salah MN (2014) Paleocene–Eocene palaeoenvironmental conditions of the main phosphorite deposits (Chouabine formation) in the Gafsa Basin, Tunisia. J Afr Earth Sci 100(2014):586–597CrossRefGoogle Scholar
  47. Kolodny Y (1980) Carbon isotopes and depositional environment of a high productivity sedimentary sequence—the case of the Mishash-Ghareb formations, Israel. Israel J Earth Sci 29:147–156Google Scholar
  48. Kolodny Y, Garrison RE (1994) Sedimentation and diagenesis in paleo-upwelling zones of Epeiric Sea and basinal settings: a comparison of the Cretaceous Mishash Formation of Israel and the Miocene Monterey Formation of California. In: Lijima A, Abed AM, Garrison RE (eds), Siliceous, phosphatic and glauconitic sediments of the tertiary and mesozoic. 29th international geological congress proceedings, pp 133–158Google Scholar
  49. Kolodny Y, Raab M (1988) Oxygen isotopes in phosphatic fish remains from Israel: paleothermometry of tropical Cretaceous and Tertiary shelf waters. Palaeogeogr Palaeoclimatol Palaeoecol 64:59–67CrossRefGoogle Scholar
  50. Lourens LJ, Hilgen FJ, Laskar J, Shackleton NJ, Wilson D (2004) The Neogene period. In: Gradstein FM (ed) Geology journal. Smith, OggGoogle Scholar
  51. Mardassi-Hafsia B (2004) Les facies micritiques producteurs d’hydrocarbures dans l’éocène inferieur de Tunisie Centro-septentrionale et leur transition vers les facies de plateforme. Sédimentation, Diagenèse et Aspect réservoir. Ph.D. Thesis. Manar II Univ., TunisiaGoogle Scholar
  52. Melki S (2008) Les carbonates de la formation Abiod dans les régions d’Ariana, Grombalia et Enfidha: Caractères sédimentaires, Diagenèse et Intérêt économique. Ph.D. Thesis. Manar II Univ., TunisiaGoogle Scholar
  53. Messadi AM (2014) Caractères sédimentaires et stratigraphie évènementielle des dépôts de l’intervalle Paléocène-Eocène dans la région de Tamerza. Master, Manar II Univ, TunisiaGoogle Scholar
  54. Messadi AM, Mardassi B, Ouali JA, Touir J (2016) Sedimentology, diagenesis, clay mineralogy and sequential analysis model of upper Paleocene evaporite-carbonate ramp succession from Tamerza area (Gafsa Basin: southern Tunisia). J Afr Earth Sci 118:205–230 (ISSN 1464-343X) CrossRefGoogle Scholar
  55. Middelburg JJ, Vlug T, van der Nat FJ (1993) Organic matter mineralization in marine systems. Glob Planet Change 8:47–58CrossRefGoogle Scholar
  56. Ounis A, Kocsis L, Chaabani F, Pfeifer H (2008) Rare earth element and stable isotope geochemistry (d13C and d18O) of phosphorite deposits in the Gafsa Basin. Tunisia. Palaeogeogr Palaeoclimatol Palaeoecol 268(1–2):1–18.  https://doi.org/10.1016/j.palaeo.2008.07.005 Google Scholar
  57. Posamentier HW, Jervey MT, Vail PR (1988) Eustatic controls on clastic deposition II—conceptual framework. In: Wilgus CK, Hastings BS, Kedall CGSC, Posamentier HW, Ross CA, Van Wagoner JC (eds) Sea level changes: an integrated approach, vol 42. Society of Economic Paleontologists and Mineralogists, Tulsa, pp 125–154CrossRefGoogle Scholar
  58. Purser BH (1978) Early diagenesis and the preservation of porosity in Jurassic limestones. J Petrol Geol 1:83–94CrossRefGoogle Scholar
  59. Read JF (1985) Carbonate Platform Facies Models. AAPG Bulletin 69:1–21Google Scholar
  60. Riddler GP, Van Eck M, Farasani AM (1989) The phosphorite deposits of the Sirhan-Turayf region, northern Saudi Arabia. In: Notholt AJG, Sheldon RP, Davidson DF (eds) Phosphate deposits of the world. Cambridge University Press, Cambridge, pp 332–337Google Scholar
  61. Rigane A, Gourmelen C (2011) Inverted intracontinental basin and vertical tectonics: the Saharan Atlas in Tunisia. J Afr Earth Sci 61(2):109–128.  https://doi.org/10.1016/j.jafrearsci.2011.05.003 (ISSN 1464-343X) CrossRefGoogle Scholar
  62. Rigane A, Gourmelen C, Broquet P, Truillet R (1994) Originalité des phénomènes tectoniques synsédimentaires fini-yprésiens en Tunisie Centro-septentrionale (région de Kairouan). Bull la Société Géologique Fr 156:27–35Google Scholar
  63. Rigane A, Feki M, Gourmelen C, Montacer M (2010) The « Aptian crisis » of the south-Tethyan margin: new tectonic data in Tunisia. J Afr Earth Sci 57:360–366CrossRefGoogle Scholar
  64. Robert C, Chamley H (1991) Development of early Eocene warm climates, as inferred from clay mineral variations in oceanic sediments. Glob Planet Change 89:315–332CrossRefGoogle Scholar
  65. Robert C, Kennett JP (1994) Antarctic subtropical humid episode at the Paleocene–Eocene boundary: clay-mineral evidence. Geology 22:211–214CrossRefGoogle Scholar
  66. Sassi S (1974) La sédimentation phosphatée au Paléocène dans le Sud et le Centre Ouest de la Tunisie. Ph.D. Thesis. Paris Univ, FranceGoogle Scholar
  67. Scheibner C, Speijer RP (2008) Late Paleocene–early Eocene Tethyan carbonate platform evolution—A response to long- and short-term paleoclimatic change. Earth Sci Rev 90:71–102CrossRefGoogle Scholar
  68. Sibley DF, Gregg JM (1987) Classification of dolomite rock textures. J Sediment Petrol 57:967–975Google Scholar
  69. Slansky M (1980) Géologie des phosphates sédimentaires. Mémoire du Bureau de recherches géologiques Minières 92:114Google Scholar
  70. Snedden JW, Liu C (2010) A compilation of Phanerozoic sea-level change, coastal onlaps and recommended sequence designations. Search and Discovery Article 40594, AAPGGoogle Scholar
  71. Soudry D (1987) Ultra-fine structures and genesis of the Campanian Negev high-grade phosphorites (southern Israel). Sedimentology 34:641–660CrossRefGoogle Scholar
  72. Soudry D, Eyal A (1994) Har Nishpe phosphate deposit. Summary of geological survey 1993. Geological Survey of Israel Report GSI/16/94, and Rotem Deshanim, Report G/05/07/94Google Scholar
  73. Soudry D, Moshkovitz S, Ehrlich A (1981) Occurrence of siliceous microfossils (diatoms, silico-flagellates and sponge spicules) in the Campanian Mishash Formation, southern Israel. Eclogae Geol Helv 74:97–107Google Scholar
  74. Soudry D, Nathan Y, Roded R (1985) The Ashosh-Haroz facies and their significance for the Mishash palaeogeography and phosphorite accumulation in the northern and central Negev. Israel J Earth Sci 34:211–220Google Scholar
  75. Soudry D, Ehrlich S, Yoffe O, Nathan Y (2002) Uranium oxidation state and related variations in geochemistry of phosphorites from the Negev (southern Israel). Chem Geol 189:213–230CrossRefGoogle Scholar
  76. Soudry D, Segal I, Nathan Y, Glenn CR, Halicz L, Lewy Z, VonderHaar DL (2004) 44Ca/42Ca and 143Nd/144Nd isotope variations in Cretaceous–Eocene Tethyan francolites and their bearing on phosphogenesis in the southern Tethys. Geology 32:389–392CrossRefGoogle Scholar
  77. Soudry D, Nathan Y, Glenn CR (2005) Phosphorus accumulation rates in the upper Cretaceous–Eocene of the southern Tethys margin—a case study of temporal fluctuations in phosphogenesis and rates of phosphate fluxes. Final scientific report. Submitted to the US–Israel Binational Science Foundation. Geological Survey Israel, Report GSI/01/2005Google Scholar
  78. Soudry D, Glenn CR, Nathan Y, Segal I, VonderHaar D (2006) Evolution of Tethyan phosphogenesis along the northern edges of the Arabian-African shield during the Cretaceous–Eocene as deduced from temporal variations of Ca and Nd isotopes and rates of P accumulation. Earth Sci Rev 78:27–57CrossRefGoogle Scholar
  79. Southgate PN, Shergold JH (1991) Application of sequence stratigraphic concepts to middle Cambrian phosphogenesis, Georgina Basin, Australias. BMR J Aust Geol Geophys 12:119–144Google Scholar
  80. Stille P (1992) Nd–Sr isotope evidence for dramatic changes of paleocurrents in the Atlantic Ocean during the past 80 m.y. Geology 20:387–390CrossRefGoogle Scholar
  81. Stille P, Steinmann M, Riggs SR (1996) Nd isotope evidence for the evolution of the paleocurrents in the Atlantic and Tethys Oceans during the past 180 Ma. Earth Planet Sci Lett 144:9–19CrossRefGoogle Scholar
  82. Strasser A (1991) Lagoonal-peritidal sequences in carbonate environments: autocyclic and allocyclic processes. In: Einsele G, Ricken W, Seo A (eds) Cycles and events in stratigraphy. Springer, Berlin, p 955Google Scholar
  83. Thomas P (1885) Sur la découverte de gisements de phosphate de chaux dans le Sud de la Tunisie ». Comptes rendus hebdomadaires des séances de l’Académie des sciences 101:1184–1187Google Scholar
  84. Tlili A, Felhi M, Montacer M (2010) Origin and depositional environment of palygorskite and sepiolite from the Ypresian phosphatic series, southwestern Tunisia. Clay Clay Min 58:573–658CrossRefGoogle Scholar
  85. Trappe J (1991) Stratigraphy, facies distribution and paleogeography of the marine Paleogene from the western High Atlas, Morocco. Neus Jahrbuch für Geologie und Palaontologie 180:279–321Google Scholar
  86. Vail PR, Mitchum RMJR, Todd RJ, Thompson S, Sangrie JB, Bodd JN, Sarg JF, Wilgus C (1977) Carbonate sequence stratigraphy in sea-level changes: an integrated approach. SEPM Spec Publ 42:155–181Google Scholar
  87. Van Couvering JA, Castradori D, Cita MB, Hilgen FJ, Rio D (2000) The base of the Zanclean stage and of the Pliocene series. Episodes 23:179–187Google Scholar
  88. Wilson JL (1975) Carbonate facies in geologic history. Springer, New YorkCrossRefGoogle Scholar
  89. Zachos J, Lohmann K, Walker JCG, Wise S (1993) Abrupt climate change and transient climates during the Paleogene: a marine perspective. J Geol 101:191–213CrossRefGoogle Scholar
  90. Zachos J, Stott L, Lohmann K (1994) Evolution of early Cenozoic marine temperatures. Paleoceanography 9(2):353–387CrossRefGoogle Scholar
  91. Zachos JC, Pagani M, Sloan L, Thomas DJ, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693CrossRefGoogle Scholar
  92. Zaier A (1999) Evolution tectono-sédimentaire du bassin phosphaté du centre Ouest de la Tunisie. Minéralogie, Pétrographie, Géochimie et Genèse des phosphorites. Ph.D Thesis. Tunisia. Manar universityGoogle Scholar
  93. Zaier A, Beji-Sassi A, Sassi S, Moody RTJ (1998) Basin evolution and deposition during the Early Paleogene in Tunisia. In: Maggregor DS, Moody RTJ, Clark-Lowes DD (eds) Petroleum geology of North Africa, vol 123. Geological Society, London, pp 375–393Google Scholar
  94. Zilli L (2010) Micropaléontologie, Paléoécologie et Bio stratigraphie des foraminifères du passage Paléocène-Eocène -Impact du réchauffement climatique global. Ph.D Thesis. Manar II univ., TunisiaGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Abdel Majid Messadi
    • 1
    Email author
  • Besma Mardassi
    • 2
  • Jamel Abdennaceur Ouali
    • 3
  • Jamel Touir
    • 1
  1. 1.Laboratory of Water Energy and Environment (L3E ENIS)Faculty of Sciences of SfaxSfaxTunisia
  2. 2.Laboratory Water Energy and Environment (L3E ENIS)Higher Institute of Biotechnology of SfaxSfaxTunisia
  3. 3.Laboratory Water Energy and Environment (L3E ENIS)National School of Engineers of SfaxSfaxTunisia

Personalised recommendations