Advertisement

The Mesozoic maximum of 87Sr/86Sr ratio: a critical turning point after the end-Permian mass extinction

  • Tao Xie
  • Qiyue Zhang
  • Shixue Hu
  • Changyong Zhou
  • Jinyuan Huang
  • Wen Wen
Original Article
  • 100 Downloads

Abstract

The secular change in 87Sr/86Sr ratio of the Mesozoic recorded the highest value above 0.7083 in Early–Middle Triassic boundary, i.e., the Triassic maximum, suggesting that a major reform in oceanography occurred after the end-Permian mass extinction. We have detected correlative highest 87Sr/86Sr value from the Triassic carbonate, including our data. The stratigraphic horizon of the maximum was constrained to the Olenekian–Anisian boundary (OAB) (247.2 Ma), by conodont. As the oceanic data represent the global average, the present study confirmed the chemostratigraphical utility of the “Triassic maximum” of 87Sr/86Sr ratio in global correlation. After the sharp rise throughout Early Triassic since the end-Permian mass extinction, a remarkable turnover of seawater-87Sr/86Sr values appeared in the OAB. A major global change likely appeared in the OAB to change the Sr-isotope balance in seawater from a continental flux-dominated to a mantle flux-dominated regime. The sharp turning point in 87Sr/86Sr values likely has recorded the timing of the biological influence on the environment.

Keywords

Strontium isotope Triassic Olenekian–Anisian boundary (OAB) Mass extinction South China 

Notes

Acknowledgements

This research was supported by China Geological Survey Projects (Nos. 12120114068101, DD20160020, 12120114068001,1212011120621, 1212011140051), and National Natural Science Foundation of China (No. 41502013). We give special thanks to Zhou Lian (State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences) and Cheng Jiang (Chengdu Center of China Geological Survey) for their help with isotopic and elemental analyses.

Supplementary material

13146_2018_475_MOESM1_ESM.cdr (39 kb)
Supplementary material 1 (CDR 39 kb)
13146_2018_475_MOESM2_ESM.cdr (52 kb)
Supplementary material 2 (CDR 52 kb)
13146_2018_475_MOESM3_ESM.cdr (135 kb)
Supplementary material 3 (CDR 135 kb)
13146_2018_475_MOESM4_ESM.cdr (34 kb)
Supplementary material 4 (CDR 34 kb)
13146_2018_475_MOESM5_ESM.cdr (44 kb)
Supplementary material 5 (CDR 45 kb)

References

  1. Algeo TJ, Chen ZQ, Fraiser ML, Twitchett RJ (2011) Terrestrial-marine teleconnections in the collapse and rebuilding of Early Triassic marine ecosystems. Palaeogeogr Palaeoclimatol Palaeoecol 308(1):1–11CrossRefGoogle Scholar
  2. Banner JL, Hanson GN (1990) Calculation of simultaneous isotopic and trace-element variations during water–rock interaction with applications to carbonate diagenesis. Geochim Cosmochim Acta 54:3123–3137CrossRefGoogle Scholar
  3. Brack P, Rieber H, Nicora A, Mundil R (2005) The global boundary stratotype section and point (GSSP) of the Ladinian Stage (Middle Triassic) at Bagolino (Southern Alps, Northern Italy) and its implications for the Triassic time scale. Episodes 28(4):233–244Google Scholar
  4. Brand U, Veizer J (1980) Chemical diagenesis of a multicomponent carbonate system-1: trace elements. J Sediment Res 50(4):1219–1236Google Scholar
  5. Brand U, Veizer J (1981) Chemical diagenesis of a multicomponent carbonate system-2: stable isotopes. J Sediment Res 51(3):987–997Google Scholar
  6. Brasier MD, Shields G, Kuleshov VN, Zhegallo EA (1996) Integrated chemo-and biostratigraphic calibration of early animal evolution: neoproterozoic–early Cambrian of southwest Mongolia. Geol Mag 133(4):445–485CrossRefGoogle Scholar
  7. Brayard A, Vennin E, Olivier N, Bylund KG, Jenks J, Stephen DA, Bucher H, Hofmann R, Goudemand N, Escarguel G (2011) Transient metazoan reefs in the aftermath of the end-Permian mass extinction. Nat Geosci 4(10):693–697CrossRefGoogle Scholar
  8. Broecker WS (1982) Ocean chemistry during glacial time. Geochim Cosmochim Acta 46(10):1689–1705CrossRefGoogle Scholar
  9. Burke WH, Denison RE, Hetherington EA, Koepnick RB, Nelson HF, Otto JB (1982) Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology 10:516–519CrossRefGoogle Scholar
  10. Chen ZQ, Benton MJ (2012) The timing and pattern of biotic recovery following the end-Permian mass extinction. Nat Geosci 5(6):375–383CrossRefGoogle Scholar
  11. Erwin DH (2006) Extinction: how life on earth nearly ended 250 million years ago. Princeton University Press, PrincetonGoogle Scholar
  12. Francois LM, Walker CG (1992) Modelling the Phanerozoic carbon cycle and climate: constraints from the 87Sr/86Sr isotopic ratio of seawater. Am J Sci 292(2):81–135CrossRefGoogle Scholar
  13. Gaffin S (1987) Ridge volume dependence on seafloor generation rate and inversion using long term sealevel change. Am J Sci 287(6):596–611CrossRefGoogle Scholar
  14. Guangxi Bureau of Geology Resources (1985) Regional geology of Guangxi Province. Geological Publishing House, Beijing (in Chinese with English abstract) Google Scholar
  15. Guizhou Bureau of Geology Resources (1987) Regional geology of Guizhou Province. Geological Publishing House, Beijing (in Chinese) Google Scholar
  16. Guo G, Tong JN, Zhang SH, Zhang J, Bai LY (2008) Cyclostratigraphy of the Induan (Early Triassic) in West Pingdingshan Section, Chaohu, Anhui Province. Sci China Ser D Earth Sci 51(1):22–29CrossRefGoogle Scholar
  17. Hallam A (1991) Why was there a delayed radiation after the end-Palaeozoic extinctions? Hist Biol 5(2–4):257–262CrossRefGoogle Scholar
  18. Haq BU, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea levels since the Triassic. Science 235(4793):1156–1167CrossRefGoogle Scholar
  19. Hu ZW, Huang SJ, Qing HR, Wang QD, Wang CM, Gao XY (2008) Evolution and global correlation for strontium isotopic composition of marine Triassic from Huaying Mountains, eastern Sichuan, China. Sci China Ser D Earth Sci 51(4):540–549CrossRefGoogle Scholar
  20. Hu SX, Zhang QY, Chen ZQ, Zhou CY, Lü T, Xie T, Wen W, Huang JY, Benton MJ (2011) The Luoping biota: exceptional preservation, and new evidence on the Triassic recovery from end-Permian mass extinction. Proc R Soc B 278:2274–2282CrossRefGoogle Scholar
  21. Huang SJ, Pei CR, Qing HR, Hu ZW, Wu SJ, Sun ZL (2006a) Age Cal ibration for the boundary between lower and middle Triassic by strontium isotope stratigraphy in Eastern Sichuan. Acta Geol Sin 80(11):1691–1698 (in Chinese with English abstract) Google Scholar
  22. Huang SJ, Sun ZL, Wu SJ, Zhang M, Pei CR, Hu ZW (2006b) Strontium isotope composition and control factors of global sea water in Triassic. J Mineral Petrol 26(1):43–48 (in Chinese with English abstract) Google Scholar
  23. Huang SJ, Qing HR, Huang PP, Hu ZW, Wang QD, Zou ML, Liu HN (2008) Evolution of strontium isotopic composition of seawater from Late Permian to Early Triassic based on study of marine carbonates, Zhongliang Mountain, Chongqing, China. Sci China Ser D Earth Sci 51(4):528–539CrossRefGoogle Scholar
  24. Isozaki Y (1997) Permo-Triassic boundary superanoxia and stratified superocean: records from lost deep sea. Science 276(5310):235CrossRefGoogle Scholar
  25. Jacobsen SB, Kaufman AJ (1999) The Sr, C and O isotopic evolution of Neoproterozoic seawater. Chem Geol 161(1):37–57CrossRefGoogle Scholar
  26. Jiang MS, Zhu JQ, Chen DZ, Zhang RH, Qiao GS (2001) Carbon and strontium isotope variations and responses to sea-level fluctuations in the Ordovician of the Tarim Basin. Sci China Ser D Earth Sci 44(9):816–823CrossRefGoogle Scholar
  27. Kaufman AJ, Jacobsen SB, Knoll AH (1993) The Vendian record of Sr and C isotopic variations in seawater: implications for tectonics and paleoclimate. Earth Planet Sci Lett 120(3–4):409–430CrossRefGoogle Scholar
  28. Kennedy MJ, Runnegar B, Prave AR, Hoffmann K, Arthur MA (1998) Two or four Neoproterozoic glaciations? Geology 26(12):1059–1063CrossRefGoogle Scholar
  29. Koepnick RB, Denison RE, Burke WH, Hetherington EA, Dahl DA (1990) Construction of the Triassic and Jurassic portion of the Phanerozoic curve of seawater 87Sr/86Sr. Chem Geol 80(4):327–349Google Scholar
  30. Korte C, Kozur HW, Bruckschen P, Veizer J (2003) Strontium isotope evolution of Late Permian and Triassic seawater. Geochim Cosmochim Acta 67(1):47–62CrossRefGoogle Scholar
  31. Kozur HW (1998) Some aspects of the Permian–Triassic boundary (PTB) and of the possible causes for the biotic crisis around this boundary. Palaeogeogr Palaeoclimatol Palaeoecol 143(4):227–272CrossRefGoogle Scholar
  32. Lehrmann DJ, Ramezani J, Bowring SA, Martin MW, Montgomery P, Enos P, Payne JL, Orchard MJ, Hongmei W, Jiayong W (2006) Timing of recovery from the end-Permian extinction: geochronologic and biostratigraphic constraints from south China. Geology 34(12):1053–1056CrossRefGoogle Scholar
  33. Lehrmann DJ, Minzoni M, Enos P, Yu YY, Wei JY, Li RX (2009) Triassic depositional history of the Yangtze platform and great bank of Guizhou in the Nanpanjiang Basin of South China. J Earth Sci Environ 31(4):344–367Google Scholar
  34. Looy CV, Brugman WA, Dilcher DL, Visscher H (1999) The delayed resurgence of equatorial forests after the Permian–Triassic ecologic crisis. Proc Natl Acad Sci 96(24):13857–13862CrossRefGoogle Scholar
  35. Martin EE, Macdougall JD (1995) Sr and Nd isotopes at the Prmian/Triassic boundary: a record of climate change. Chem Geol 125:73–99CrossRefGoogle Scholar
  36. McArthur JM, Howarth RJ (2004) Strontium isotope stratigraphy. In: Gradstein FM, Ogg JM, Smith AG (eds) A geologic time scale. Cambridge University Press, Cambridge, p 96Google Scholar
  37. Mcarthur JM, Howarth RAJ, Bailey TR (2001) Strontium isotope stratigraphy: LOWESS version 3: best fit to the marine Sr-isotope curve for 0–509 Ma and accompanying look-up table for deriving numerical age. J Geol 109:155–170CrossRefGoogle Scholar
  38. McArthur JM, Mutterlose J, Price GD, Rawson PF, Ruffell A, Thirlwall MF (2004) Belemnites of Valanginian, Hauterivian and Barremian age: Sr-isotope stratigraphy, composition (87Sr/86Sr, δ13C, δ18O, Na, Sr, Mg), and palaeo-oceanography. Palaeogeogr Palaeoclimatol Palaeoecol 202(3):253–272CrossRefGoogle Scholar
  39. Palmer MR, Edmond JM (1989) The strontium isotope budget of the modern ocean. Earth Planet Sci Lett 92(1):11–26CrossRefGoogle Scholar
  40. Payne JL, Kump LR (2007) Evidence for recurrent Early Triassic massive volcanism from quantitative interpretation of carbon isotope fluctuations. Earth Planet Sci Lett 256:264–277CrossRefGoogle Scholar
  41. Payne JL, Lehrmann DJ, Wei J, Orchard MJ, Schrag DP, Knoll AH (2004) Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science 305:506–509CrossRefGoogle Scholar
  42. Payne JL, Lehrmann DJ, Christensen S, Wei J, Knoll AH (2006) Environmental and biological controls on the initiation and growth of a Middle Triassic (Anisian) reef complex on the Great Bank of Guizhou, Guizhou Province, China. Palaios 21(4):325–343CrossRefGoogle Scholar
  43. Peterman ZE, Hedge CE, Tourtelot HA (1970) Isotopic composition of strontium in sea water throughout Phanerozoic time. Geochim Cosmochim Acta 34(1):105–120CrossRefGoogle Scholar
  44. Retallack GJ, Sheldon ND, Carr PF, Fanning M, Thompson CA, Williams ML, Jones BG, Hutton A (2011) Multiple Early Triassic greenhouse crises impeded recovery from Late Permian mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol 308(1):233–251CrossRefGoogle Scholar
  45. Richter FM, Rowley DB, DePaolo DJ (1992) Sr isotope evolution of seawater: the role of tectonics. Earth Planet Sci Lett 109(1):11–23CrossRefGoogle Scholar
  46. Ruppel SC, James EW, Barrick JE, Nowlan G, Uyeno TT (1996) High-resolution 87Sr/86Sr chemostratigraphy of the Silurian: implications for event correlation and strontium flux. Geology 24(9):831–834CrossRefGoogle Scholar
  47. Sawaki Y, Kawai T, Shibuya T, Tahata M, Omori S, Komiya T, Yoshida N, Hirata T, Ohno T, Windley BF (2010) 87Sr/86Sr chemostratigraphy of Neoproterozoic Dalradian carbonates below the Port Askaig glaciogenic formation, Scotland. Precambrian Res 179(1–4):150–164CrossRefGoogle Scholar
  48. Sedlacek ARC, Saltzman MR, Algeo TJ, Horacek M, Brandner R, Foland K, Denniston RF (2014) 87Sr/86Sr stratigraphy from the early Triassic of Zal, Iran: linking temperature to weathering rates and the tempo of ecosystem recovery. Geology 42(9):79–782CrossRefGoogle Scholar
  49. Shen Y, Farquhar J, Zhang H, Masterson A, Zhang T, Wing BA (2011) Multiple S-isotopic evidence for episodic shoaling of anoxic water during Late Permian mass extinction. Nat Commun 2:210CrossRefGoogle Scholar
  50. Song H, Wignall PB, Tong J, Bond DP, Song H, Lai X, Zhang K, Wang H, Chen Y (2012) Geochemical evidence from bio-apatite for multiple oceanic anoxic events during Permian–Triassic transition and the link with end-Permian extinction and recovery. Earth Planet Sci Lett 353:12–21CrossRefGoogle Scholar
  51. Song H, Wignall PB, Chu D, Tong J, Sun Y, Song H, He W, Tian L (2014a) Anoxia/high temperature double whammy during the Permian–Triassic marine crisis and its aftermath. Sci Rep.  https://doi.org/10.1038/srep04132 CrossRefGoogle Scholar
  52. Song H, Tong J, Algeo TJ, Song H, Qiu H, Zhu Y, Tian L, Bates S, Lyons TW, Luo G, Kump LR (2014b) Early Triassic seawater sulfate drawdown. Geochim Cosmochim Acta 128:95–113CrossRefGoogle Scholar
  53. Sun Y, Joachimski MM, Wignall PB, Yan C, Chen Y, Jiang H, Wang L, Lai X (2012) Lethally hot temperatures during the Early Triassic greenhouse. Science 338:366–370CrossRefGoogle Scholar
  54. Tong JN, Zhang SX, Zuo JX, Xiong XQ (2007) Events during Early Triassic recovery from the end-Permian extinction. Global Planet Change 55(1):66–80CrossRefGoogle Scholar
  55. Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden GAF, Diener A, Ebneth S, Godderis Y (1999) 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol 161:59–88CrossRefGoogle Scholar
  56. Weidlich O, Kiessling W, Fl U, Gel E (2003) Permian–Triassic boundary interval as a model for forcing marine ecosystem collapse by long-term atmospheric oxygen drop. Geology 31(11):961–964CrossRefGoogle Scholar
  57. Wignall PB (2001) Large igneous provinces and mass extinctions. Earth Sci Rev 53(1):1–33CrossRefGoogle Scholar
  58. Wignall PB (2007) The End-Permian mass extinction—how bad did it get? Geobiology 5(4):303–309CrossRefGoogle Scholar
  59. Wignall PB, Twitchett RJ (2002) Extent, duration, and nature of the Permian-Triassic superanoxic event. GSA Special Papers 356:395–413Google Scholar
  60. Woods AD, Bottjer DJ, Mutti M, Morrison J (1999) Lower Triassic large sea-floor carbonate cements: their origin and a mechanism for the prolonged biotic recovery from the end-Permian mass extinction. Geology 27(7):645CrossRefGoogle Scholar
  61. Xie S, Pancost RD, Wang Y, Yang H, Wignall PB, Luo G, Jia C, Chen L (2010) Cyanobacterial blooms tied to volcanism during the 5 m.y. Permo-Triassic biotic crisis. Geology 38(5):447–450CrossRefGoogle Scholar
  62. Xie T, Zhang Q, Hu S, Zhou CY, Huang JY, Wen W (2013a) The characteristics of the volcanic-ash layer at the Early–Middle Triassic boundary in Luoping area. Acta Geol Sin 87:926–927 (English Edition) CrossRefGoogle Scholar
  63. Xie T, Zhou CY, Zhang QY, Hu SX, Huang JY, Wen W, Cong F (2013b) Zircon U–Pb Age for the Tuff before the Luoping Biota and its geological implication. Geol Rev 59(1):159–164 (in Chinese with English abstract) Google Scholar
  64. Zhang QY, Zhou CY, Lü T, Xie T, Lou XY, Liu W, Sun YY, Huang JY, Zhao LS (2009) A conodont-based Middle Triassic age assignment for the Luoping Biota of Yunnan, China. Sci China Ser D Earth Sci 52(10):1673–1678CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Tao Xie
    • 1
  • Qiyue Zhang
    • 1
  • Shixue Hu
    • 1
  • Changyong Zhou
    • 1
  • Jinyuan Huang
    • 1
  • Wen Wen
    • 1
  1. 1.Chengdu Center of China Geological SurveyChengduChina

Personalised recommendations