Advertisement

Carbonates and Evaporites

, Volume 33, Issue 3, pp 347–357 | Cite as

Detection of the gas-bearing zone in a carbonate reservoir using multi-class relevance vector machines (RVM): comparison of its performance with SVM and PNN

  • Reza Mohebian
  • Mohammad Ali Riahi
  • Mona Afjeh
Original Article

Abstract

Automatic classification of seismic reflection data plays an important role in reservoir characterization and petroleum geosciences. Recently, the relevance vector machines (RVM) have attracted substantial interest in data classification literature. The RVM is a Bayesian variant of support vector machine (SVM) that can surmount the limitations of other conventional methods. The main purpose of this study is to show the effectiveness of RVM as a linear classifier to classify the variation in seismic data. In this study, we explored the potentials of RVM in identifying anomalous seismic reflection signals. First, the efficiency of RVM technique is compared with other conventional methods (SVM and probabilistic neural network (PNN)), and then a multi-class RVM algorithm based on the Gaussian approximation model is used to successfully classify synthetic and field seismic data. The result of this study shows that RVM is successful in the determination of gas-bearing zone in one of the Iranian southern oil fields.

Keywords

Seismic data Relevance vector machine Gaussian approximation model Multi-class classification 

Notes

Acknowledgements

The authors acknowledge the research council at the University of Tehran for supporting this research.

References

  1. Ahmadi MA (2011) Prediction of asphaltene precipitation using artificial neural network optimized by imperialist competitive algorithm”. J Pet Explor Prod Technol 1(2–4):99–106CrossRefGoogle Scholar
  2. Ahmadi MA, Ebadi M, Hosseni SM (2014) Prediction breakthrough time of water coning in the fractured reservoirs by implementing low parameter support vector machine approach. Fuel 117:579–589CrossRefGoogle Scholar
  3. Ahmadi MA, Hasanvand MZ, Bahadori A (2015a) A least-squares support vector machine approach to predict temperature drop accompanying a given pressure drop for the natural gas production and processing systems. Int J Ambient Energy 38(2):122–129.  https://doi.org/10.1080/01430750.2015.1055515 CrossRefGoogle Scholar
  4. Ahmadi MA, Soleimani R, Lee M, Kashiwao T, Bahadori A (2015b) Determination of oil well production performance using artificial neural network (ANN) linked to the particle swarm optimization (PSO) tool. Petroleum 1(2):118–132CrossRefGoogle Scholar
  5. Aminzadeh F (2000) Reservoir parameter estimation using a hybrid neural network. Comput Geosci 26:860–875CrossRefGoogle Scholar
  6. ASCE Task Committee on Application of the Artificial Neural Networks in Hydrology (2000) Artificial neural networks in hydrology II: hydrologic applications. J Hydrol Eng ASCE 5(2):124–137CrossRefGoogle Scholar
  7. Atsanos N, Likes A, Tzikas DJ (2009) Sparse bayesian modeling whit adaptive kernel learning. IEEE Trans Neural Netw 20(6):926–937CrossRefGoogle Scholar
  8. Bagheri M, Riahi MA (2014) Seismic facies analysis from well logs based on supervised classification scheme with different machine learning techniques. Arab J Geosci 8(9):7153–7161.  https://doi.org/10.1007/s12517-014-1691-5 CrossRefGoogle Scholar
  9. Berger JO (1985) Statistical decision theory and bayesian analysis, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  10. Burges CJC, Schölkopf B (1997) Improving the accuracy and speed of support vector learning machines. In: Mozer MC, Jordan MI, Petsche T (eds) Advances in neural information processing systems, vol 9. MIT Press, Cambridge, pp 375–381Google Scholar
  11. Damoulas T, Girolami M, Ying Y, Campbell C (2008) Inferring sparse kernel combinations and relevance vectors: an application to subcellular localization of proteins. Bioinformatics 24(10):1264–1270CrossRefGoogle Scholar
  12. Duin RPW, Loog M, Pekalska EP, Tax DMJ (2010) Feature-based dissimilarity space classification, ICPR, LNCS 6388, pp 46–55Google Scholar
  13. He W, Yow KC, Guo Y (2012) Recognition of human activities using a multiclass relevance vector machine. Opt Eng 51(017):202Google Scholar
  14. Kecman V (2001) Learning and soft computing: support vector machines, neural networks, and fuzzy logic models. MIT Press, CambridgeGoogle Scholar
  15. Kunstmann H, Kinzelbach W, Siegfried T (2002) Conditional first-order second moment method and its application to the quantification of uncertainty in groundwater modeling. Water Resour Res 38(4):1035CrossRefGoogle Scholar
  16. Lima CAM, Coelho ALV, Chagas S (2009) Automatic EEG signal classification for epilepsy diagnosis with relevance vector machines. Expert Syst Appl 36:10054–10059CrossRefGoogle Scholar
  17. Lima CAM, Coelho ALV, Madeo RCB, Peres SM (2015) Classification of electromyography signals using relevance vector machines and fractal dimension. Neural Comput Appl.  https://doi.org/10.1007/s00521-015-1953-5 Google Scholar
  18. Liong S, Sivapragasam C (2002) Flood stage forecasting with support vector machines. J Am Water Resour Assoc 38(1):173–186CrossRefGoogle Scholar
  19. Lippmann RP (1989) Pattern classification using neural networks. IEEE Communications Magazine, November 1989Google Scholar
  20. MacKay DJ (1992) Bayesian methods for adaptive models. Ph.D. thesis, Dept. of Computation and Neural Systems, California Institute of Technology, Pasadena, CAGoogle Scholar
  21. McCulloch Warren, Pitts Walter (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5:115–133CrossRefGoogle Scholar
  22. Nazari A, Riahi MA, Heidari B (2017) Detection of gas bearing intervals using S-transform and AVO analysis. Carbon Evaporites 32(1):53–61CrossRefGoogle Scholar
  23. Ozer S, Haider MA, Langer DL, Van der Kwast TH (2009) Prostate cancer localization with multispectral MRI based on relevance vector machines. Conference Paper in Proceedings/IEEE International Symposium on Biomedical Imaging: from nano to macro. IEEE International Symposium on Biomedical Imaging, June 2009Google Scholar
  24. Psorakis I, Damoulas T, Girolami MA (2010) Multiclass relevance vector machines: sparsity and accuracy. IEEE Trans Neural Netw 21(10):1588–1598CrossRefGoogle Scholar
  25. Rochester N, Holland JH, Habit LH, Duda WL (1956) Tests on a cell assembly theory of the action of the brain, using a large digital computer. IRE Trans Inform Theory 2(3):80–93.  https://doi.org/10.1109/tit.1956.1056810 CrossRefGoogle Scholar
  26. Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65(6):386–408.  https://doi.org/10.1037/h0042519 CrossRefGoogle Scholar
  27. Schölkopf B, Smola AJ (2002) Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT Press, CambridgeGoogle Scholar
  28. Tipping ME (2000) The relevance vector machine. In: Solla SA, Leen TK, Muller K-R (eds) Advances in neural information processing systems, vol 12. MIT Press, pp 652–658Google Scholar
  29. Tipping M (2001) Sparse bayesian learning and the relevance vector machine. J Mach Learn Res 1:211–244Google Scholar
  30. Vapnik V (1963) Pattern recognition using generalized portrait method. Autom Remote Control 24:774–780Google Scholar
  31. Vapnik V (1982) Estimation of dependencies based on empirical data. Springer, New YorkGoogle Scholar
  32. Vapnik V (1992) Principles of risk minimization for learning theory. In Moodey JE, Hanson SJ, Lippmann RP (eds) Advances in Neural Information Processing Systems, vol 4, pp 831–838Google Scholar
  33. Vapnik V (1995) The nature of statistical learning theory. Springer-Verlag, New YorkCrossRefGoogle Scholar
  34. Vapnik V (1998) Statistical learning theory. Wiley, New-YorkGoogle Scholar
  35. Wahba G (1985) A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline-smoothing problem. Ann Stat 4:1378–1402CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Reza Mohebian
    • 1
  • Mohammad Ali Riahi
    • 1
  • Mona Afjeh
    • 2
  1. 1.Institute of GeophysicsUniversity of TehranTehranIran
  2. 2.Department of GeophysicsUniversity of Azad, North BranchTehranIran

Personalised recommendations