Carbonates and Evaporites

, Volume 34, Issue 4, pp 1265–1279 | Cite as

Trace and rare earth element geochemistry of Holocene hydromagnesite from Dujiali Lake, central Qinghai–Tibetan Plateau, China

  • Yongjie Lin
  • Mianping ZhengEmail author
  • Chuanyong YeEmail author
  • Ian M. Power
Original Article


The genesis of hydromagnesite [Mg5(CO3)4(OH)2·4H2O] has attracted great interest as a pathway for sequestering anthropogenic CO2 and because of its importance to Mg carbonate depositional environments; however, there remain uncertainties regarding the chemical environment for hydromagnesite precipitation in modern and ancient geologic systems. Trace and rare earth element (REE) concentrations in hydromagnesite from Dujiali Lake, central Qinghai–Tibetan Plateau, China identified the formation conditions in the context of the depositional environment. The analyzed hydromagnesite samples had low total REE concentrations, varying from 0.62 to 3.11 ppm, with an average ∑REE value of 1.75 ppm. Comparisons of Ce/Ce* with LaN/SmN, DyN/SmN, and ∑REE showed no correlation indicating preservation of the original redox conditions during hydromagnesite precipitation. Redox-sensitive trace element ratios (U/Th, Ni/Co, V/Cr and V/V + Ni), negative Mn* values, and low authigenic uranium (Ua) values all indicate oxic conditions at the time of hydromagnesite formation. Furthermore, the Post-Archean Australian Shale-normalized REE patterns of the hydromagnesite display slight heavy REE enrichment, a slightly negative Ce anomaly, and a consistently positive Eu anomaly, which are consistent with precipitation in a predominantly oxidizing environment. Data indicate that hydromagnesite precipitated from waters influenced by both Mg-rich hydrothermal fluids and meteoric water with a similar composition to the lake water. This study provides new insights into the conditions of hydromagnesite formation at Dujiali Lake with implications for the understanding of the genesis of modern and ancient Mg carbonate deposits.


Trace element Rare earth element Hydromagnesite Formation conditions Alkaline lake Qinghai–Tibetan Plateau 



The authors would like to thank Dr. Andong Chen for assistance with sample preparation, and Yanhui Zhang, Liangsheng Zhang, and Chenguang Xia for their help analyzing the major and trace elements. Special thanks to the anonymous reviewer whose insightful comments led to the improvement of our manuscript. This research was supported by Joint Funds of National Natural Science Foundation of China and the People’s Government of Qinghai Province (Grant number: U1407207), National Natural Science Foundation of China (Grant number: 41603048), and Projects of China Geological Survey (Grant number: DD20160025).


  1. Akhtar T, Shireen K, Bashir E, Nassem S (2009) Characteristics of ultramafic rocks and associated magnesite deposits, Nal Area, Khuzdar, Balochistan, Pakistan. J Geol Min Res 1:034–041Google Scholar
  2. Algeo TJ, Maynard JB (2004) Trace-element behaviour and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chem Geol 206(3–4):289–318CrossRefGoogle Scholar
  3. Barrat JA, Boulègue J, Tiercelin JJ, Lesourd M (2000) Strontium isotopes and rare-earth element geochemistry of hydrothermal carbonate deposits from Lake Tanganyika, East Africa. Geochimica et Cosmochimica Acta 64(2):287–298CrossRefGoogle Scholar
  4. Bau M, Dulski P (1996) Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Res 79(1–2):37–55CrossRefGoogle Scholar
  5. Bau M, Möller P (1992) Rare earth element fractionation in metamorphogenic hydrothermal calcite, magnesite and siderite. Mineral Petrol 45:231–246CrossRefGoogle Scholar
  6. Bellanca A, Claps M, Erba E, Masetti D, Neri R, Premoil Silva I, Venezia F (1996) Orbitally induced limestone/marlstone rhythms in the Albian–Cenomanian Cismon section (Venetian region, northern Italy): sedimentology, calcareous and siliceous plankton distribution, elemental and isotope geochemistry. Palaeogeogr Palaeoclimatol Palaeoecol 126(3–4):227–260CrossRefGoogle Scholar
  7. Bian YY, Lin ZJ, Feng D, Chen DF (2012) Rare earth elements of seep carbonates and using them to trace redox variation at seep sites. J Trop Oceanogr 31(5):37–44 (in Chinese) Google Scholar
  8. Birgel D, Feng D, Roberts HH, Peckmann J (2011) Changing redox conditions at cold seeps as revealed by authigenic carbonates from Alaminos Canyon, Northern Gulf of Mexico. Chem Geol 285(1–4):82–96CrossRefGoogle Scholar
  9. Bonales LJ, Muñoz-Iglesias V, Santamaría-Pérez D, Caceres M, Fernandez-Remolar D, Prieto-Ballesteros O (2013) Quantitative Raman spectroscopy as a tool to study the kinetics and formation mechanism of carbonates. Spectrochim Acta Part A Mol Biomol Spectrosc 116:26–30CrossRefGoogle Scholar
  10. Braithwaite CJR, Zedef V (1994) Living hydromagnesite stromatolites from Turkey. Sediment Geol 92(1–2):1–5CrossRefGoogle Scholar
  11. Braithwaite CJR, Zedef V (1996) Hydromagnesite stromatolites, sediments in an alkaline lake, Salda Golü, Turkey. J Sediment Res 66(5):991–1002Google Scholar
  12. Calvert SE, Pedersen TF (1993) Geochemistry of recent oxic and anoxic sediments: implications for the geological record. Mar Geol 113:67–88CrossRefGoogle Scholar
  13. Calvert SE, Pedersen TF (1996) Sedimentary geochemistry of manganese: implications for the environment of formation of manganiferous black shales. Econ Geol 91(1):36–47CrossRefGoogle Scholar
  14. Canaveras JC, Hoyos M, Sanchez-Moral S, Sanz-Rubio J, Bedoya J, Soler V, Groth I, Schumann L, Laiz L, Conzalez I, Saiz-Jimenez C (1999) Microbial communities associated with hydromagnesite and needle-fiber aragonite deposits in a karstic cave (Altamira, Northern Spain). Geomicrobiol J 16(1):9–25CrossRefGoogle Scholar
  15. Cangemi M, Censi P, Reimer A, D’Alessandro W, Hause-Reitner D, Madonia P, Oliveri Y, Pecoraino G, Reitner J (2016) Carbonate precipitation in the alkaline lake Specchio di Venere (Pantelleria Island, Italy) and the possible role of microbial mats. Appl Geochem 67:168–176CrossRefGoogle Scholar
  16. Chagas AAP, Webb GE, Burne RV, Southam G (2016) Modern lacustrine microbialites: towards a synthesis of aqueous and carbonate geochemistry and mineralogy. Earth Sci Rev 162:338–363CrossRefGoogle Scholar
  17. Cullers RL (2002) Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA. Chem Geol 191:305–327CrossRefGoogle Scholar
  18. Debruyne D, Hulsbosch N, Muchez P (2016) Unraveling rare earth element signatures in hydrothermal carbonate minerals using a source–sink system. Ore Geol Rev 72(1):232–252CrossRefGoogle Scholar
  19. Ekambaram V, Brookins DG, Rosenberg PE, Emanuel KM (1986) Rare-earth element geochemistry of fluorite-carbonate deposits in western Montana, U.S.A. Chem Geol 54(3–4):319–331CrossRefGoogle Scholar
  20. Feng JL, Zhao ZH, Chen F, Hu HP (2014) Rare earth elements in sinters from the geothermal waters (hot springs) on the tibetan plateau, china. J Volcanol Geoth Res 287:1–11CrossRefGoogle Scholar
  21. Fischbeck R, Müller G (1971) Monohydrocalcite, hydromagnesite, nesquehonite, dolomite, aragonite, and calcite in speleothems of the Fränkische Schweiz, Western Germany. Contrib Miner Petrol 33:87–92Google Scholar
  22. Franchi F, Hofmann A, Cavalazzi B, Wilson A, Barbieri R (2015) Differentiating marine vs hydrothermal processes in Devonian carbonate mounds using rare earth elements (Kess Kess mounds, Anti-Atlas, Morocco). Chem Geol 409:69–86CrossRefGoogle Scholar
  23. Frimmel HE (2009) Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator. Chem Geol 258(3–4):338–353CrossRefGoogle Scholar
  24. Ge L, Jiang SY, Swennen R, Yang T, Yang JH, Wu NY, Liu JA, Chen DH (2010) Chemical environment of cold seep carbonate formation on the northern continental slope of South China Sea: evidence from trace and rare earth element geochemistry. Mar Geol 277(1–4):21–30CrossRefGoogle Scholar
  25. German CR, Elderfield H (1990) Application of the Ce anomaly as a paleoredox indicator: the ground rules. Paleoceanography 5(5):823–833CrossRefGoogle Scholar
  26. Goldschmidt VM (1954) Geochemistry. Oxford Press, New YorkGoogle Scholar
  27. Green DI, Young B (2006) Hydromagnesite and dypingite from the northern Pennine Orefield, northern England. Proc Yorks Geol Soc 56(2):151–154CrossRefGoogle Scholar
  28. Hatch JR, Leventhal JS (1992) Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) stark shale member of the Dennis Limestone, Wabaunsee County, Kansas, USA. Chem Geol 99(1–3):65–82CrossRefGoogle Scholar
  29. Haurie L, Fernández AI, Velasco JI, Chimenos JM, Ticó-Grau JR, Espiell F (2005) Synthetic hydromagnesite as flame retardant. A study of the stearic coating process. Macromol Symp 221:165–174CrossRefGoogle Scholar
  30. Haurie L, Fernández AI, Velasco JI, Chimenos JP, Ticó-Grau JP, Espiell F (2006) Synthetic hydromagnesite as flame retardant. Evaluation of the flame behaviour in a polyethylene matrix. Polym Degrad Stab 91(5):989–994CrossRefGoogle Scholar
  31. Hecht L, Freiberger R, Gilg HA, Grundmann G, Kostitsyn YA (1999) Rare earth element and isotope (C, O, Sr) characteristics of hydrothermal carbonates: genetic implications for dolomite-hosted talc mineralization at Göpfersgrün (Fichtelgebirge, Germany). Chem Geol 155(1–2):115–130CrossRefGoogle Scholar
  32. Hill C, Forti P (1997) Cave minerals of the world, 2nd edn. National Speleological Society, HuntsvilleGoogle Scholar
  33. Himmler T, Bach W, Bohrmann G, Peckmann J (2010) Rare earth elements in authigenic methane-seep carbonates as tracers for fluid composition during early diagenesis. Chem Geol 277(1–2):126–136CrossRefGoogle Scholar
  34. Hollingbery LA, Hull TR (2010) The thermal decomposition of huntite and hydromagnesite—a review. Thermochim Acta 509(1–2):1–11CrossRefGoogle Scholar
  35. Hopkinson L, Kristova P, Rutt K, Cressey G (2012) Phase transitions in the system MgO–CO2–H2O during CO2 degassing of Mg-bearing solutions. Geochim Cosmochim Acta 76:1–13CrossRefGoogle Scholar
  36. Janet CM, Viswanathan B, Viswanath RP, Varadarajan TK (2007) Characterization and photoluminescence properties of MgO microtubes synthesized from hydromagnesite flowers. J Phys Chem C 111(28):10267–10272CrossRefGoogle Scholar
  37. Johnson CL, Hudson SM, Rowe HD, Efendiyeva MA (2010) Geochemical constraints on the Palaeocene-Miocene evolution of eastern Azerbaijan, with implications for the South Caspian Basin and eastern Paratethys. Basin Res 22:733–750CrossRefGoogle Scholar
  38. Jones B, Manning DAC (1994) Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chem Geol 111(1–4):111–129CrossRefGoogle Scholar
  39. Kamber BS, Webb GE (2001) The geochemistry of late Archaean microbial carbonate: implications for ocean chemistry and continental erosion history. Geochim Cosmochim Acta 65:2509–2525CrossRefGoogle Scholar
  40. Kamber BS, Webb GE, Gallagher M (2014) The rare earth element signal in Archaean microbial carbonate: information on ocean redox and biogenicity. J Geol Soc 171:745–763CrossRefGoogle Scholar
  41. Kaźmierczak J, Altermann W, Kremer B, Kempe S, Eriksson PG (2009) Mass occurrence of benthic coccoid cyanobacteria and their role in the production of Neoarchean carbonates of South Africa. Precambr Res 173(1–4):79–92CrossRefGoogle Scholar
  42. Khan KF, Dar SA, Khan SA (2012) Rare earth element (REE) geochemistry of phosphorites of the Sonrai area of Paleoproterozoic Bijawar basin, Uttar Pradesh, India. J Rare Earths 30:507–514Google Scholar
  43. Königsberger E, Königsberger L, Gamsjager H (1999) Low-temperature thermodynamic model for the system Na2CO3–MgCO3–CaCO3–H2O. Geochim Cosmochim Acta 63(19–20):3105–3119CrossRefGoogle Scholar
  44. Last FM, Last WM (2012) Lacustrine carbonates of the northern Great Plains of Canada. Sediment Geol 277–278:1–31CrossRefGoogle Scholar
  45. Leybourne MI, Goodfellow WD, Boyle DR, Hall GM (2000) Rapid development of negative Ce anomalies in surface waters and contrasting REE patterns in groundwaters associated with Zn–Pb massive sulphide deposits. Appl Geochem 15(6):695–723CrossRefGoogle Scholar
  46. Li R, Jones B (2014) Evaluation of carbonate diagenesis: a comparative study of minor elements, trace elements, and rare-earth elements (REE + Y) between Pleistocene corals and matrices from Grand Cayman, British West Indies. Sediment Geol 314:31–46CrossRefGoogle Scholar
  47. Lin Y, Zheng M, Ye C (2017) Hydromagnesite precipitation in the Alkaline Lake Dujiali, central Qinghai-Tibetan Plateau: constraints on hydromagnesite precipitation from hydrochemistry and stable isotopes. Appl Geochem 78:139–148CrossRefGoogle Scholar
  48. Liu YG, Miah MRU, Schmitt RA (1988) Cerium: a chemical tracer for paleo-oceanic redox conditions. Geochim Cosmochim Acta 52(6):1361–1371CrossRefGoogle Scholar
  49. Loope GR, Kump LR, Arthur MA (2013) Shallow water redox conditions from the Permian-Triassic boundary microbialite: the rare earth element and iodine geochemistry of carbonates from Turkey and South China. Chem Geol 351:195–208CrossRefGoogle Scholar
  50. Machhour L, Philip J, Oudin JL (1994) Formation of laminate deposits in anaerobic—dysaerobic marine environments. Mar Geol 117:287–302CrossRefGoogle Scholar
  51. Manthilake MAGM, Sawada Y, Sakai S (2008) Genesis and evolution of Eppawala carbonatites, Sri Lanka. J Asian Earth Sci 32(1):66–75CrossRefGoogle Scholar
  52. Martinez-Ruiz F, Ortega-Huertas M, Palomo I (2000) Positive Eu anomaly development during diagenesis of the K/T boundary ejecta layer in the Agost section (SE Spain): implications for trace-element remobilization. Terra Nova 11(6):290–296CrossRefGoogle Scholar
  53. McArthur JM, Walsh JN (1984) Rare-earth geochemistry of phosphorites. Chem Geol 47(3–4):91–220Google Scholar
  54. McLennan SM (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Rev Mineral Geochem 21:169–200Google Scholar
  55. Müller G, Irion G, Förstner U (1972) Formation and diagenesis of inorganic Ca–Mg carbonates in the lacustrine environment. Sci Nat 59:158–164CrossRefGoogle Scholar
  56. Northup E, Kathleen H, Lavoie D (2001) Geomicrobiology of caves: a review. Geomicrobiol J 18(3):199–222CrossRefGoogle Scholar
  57. O’Neil JR, Barnes I (1971) C13 and O18 compositions in some fresh-water carbonates associated with ultramafic rocks and serpentinites: western United States. Geochim Cosmochim Acta 35(7):687–697CrossRefGoogle Scholar
  58. Oskierski HC, Dlugogorski BZ, Jacobsen G (2013) Sequestration of atmospheric CO2 in chrysotile mine tailings of the Woodsreef asbestos mine, Australia: quantitative mineralogy, isotopic fingerprinting and carbonation rates. Chem Geol 358:156–169CrossRefGoogle Scholar
  59. Oskierski HC, Dlugogorski BZ, Oliver TK, Jacobsen G (2016) Chemical and isotopic signatures of waters associated with the carbonation of ultramafic mine tailings, Woodsreef Asbestos Mine, Australia. Chem Geol 436:11–23CrossRefGoogle Scholar
  60. Pan GT, Wang LQ, Li RQ, Yuan SH, Ji WH, Yin FG, Zhang WP, Wang BD (2012) Tectonic evolution of the Qinghai-Tibet Plateau. J Asian Earth Sci 53:3–14CrossRefGoogle Scholar
  61. Peckmann J, Thiel V, Michaelis W, Clari P, Gaillard C, Martire L, Reitner J (2009) Cold seep deposits of Beauvoisin (Oxfordian; southeastern France) and Marmorito (Miocene; northern Italy): microbially induced authigenic carbonates. Biol J Lin Soc 98(1):181–186CrossRefGoogle Scholar
  62. Power IM, Wilson SA, Thom JM, Dipple GM, Southam G (2007) Biologically induced mineralization of dypingite by cyanobacteria from an alkaline wetland near Atlin, British Columbia, Canada. Geochem Trans 8:229–247CrossRefGoogle Scholar
  63. Power IM, Wilson SA, Thom JM, Dipple GM, Gabites JE, Southam G (2009) The hydromagnesite playas of Atlin, British Columbia, Canada: a biogeochemical model for CO2 sequestration. Chem Geol 260(3–4):286–300CrossRefGoogle Scholar
  64. Power IM, Wilson SA, Harrison AL, Dipple GM, McCutcheon J, Southam G, Kenward PA (2014) A depositional model for hydromagnesite–magnesite playas near Atlin, British Columbia, Canada. Sedimentology 61(6):1701–1733CrossRefGoogle Scholar
  65. Power IM, Harrison AL, Dipple GM (2016) Accelerating mineral carbonation using carbonic anhydrase. Environ Sci Technol 50(5):2610–2618CrossRefGoogle Scholar
  66. Rao TR, Chohan VS (1995) Kinetics of thermal decomposition of hydromagnesite. Chem Eng Technol 18(5):359–363CrossRefGoogle Scholar
  67. Realinho V, Haurie L, Antunes M, Velasco JI (2014) Thermal stability and fire behaviour of flame retardant high density rigid foams based on hydromagnesite-filled polypropylene composites. Compos B Eng 58:553–558CrossRefGoogle Scholar
  68. Renaut RW, Long PR (1989) Sedimentology of the saline lakes of the Cariboo Plateau, Interior British Columbia, Canada. Sediment Geol 64(4):239–264CrossRefGoogle Scholar
  69. Sáez R, Moreno C, González F, Almodovar GR (2011) Black shales and massive sulfide deposits: causal or casual relationships? Insights from Rammelsberg, Tharsis, and Draa Sfar. Miner Depos 46(5):585–614CrossRefGoogle Scholar
  70. Sarkar A, Sarangi S, Ebihara M, Bhattacharya SK, Ray AK (2003) Carbonate geochemistry across the Eocene/Oligocene boundary of Kutch, western India: implications to oceanic O2-poor condition and foraminiferal extinction. Chem Geol 201(3–4):281–293CrossRefGoogle Scholar
  71. Shi RD (2007) SHRIMP dating of the Bangong Lake SSZ-type ophiolite: constraints on the closure time of ocean in the Bangong Lake-Nujiang River, northwestern Tibet. Chin Sci Bull 52:936–941CrossRefGoogle Scholar
  72. Shi RD, Yang JS, Xu ZQ, Qi XX (2005) Recognition of MOR- and SSZ-type ophiolites in the Bangong Lake ophiolite mélange, western Tibet: evidence from two kinds of mantle peridotites. Acta Petrologica et Mineralogica 24: 397–408 (in Chinese) Google Scholar
  73. Shields G, Stille P (2001) Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: anisotopic and REE study of Cambrian phosphorites. Chem Geol 175(1–2):29–48CrossRefGoogle Scholar
  74. Sholkovitz ER, Landing WM, Lewis BL (1994) Ocean particle chemistry: the fractionation of rare earth elements between suspended particles and seawater. Geochim Cosmochim Acta 58:1567–1579Google Scholar
  75. Sverjensky DA (1984) Europium redox equilibria in aqueous solution. Earth Planet Sci Lett 67(1):70–78CrossRefGoogle Scholar
  76. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution: an examination of the geochemical record preserved in sedimentary rocks. Blackwell Science, Oxford, pp 1–312Google Scholar
  77. Tong W, Zhang MT, Zhang ZF (1981) Geothermics in Tibet. Science Press, Beijing, pp 1–170 (in Chinese) Google Scholar
  78. Tostevin R, Shields GA, Tarbuck GM, He T, Clarkson MO, Wood RA (2016) Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings. Chem Geol 438:146–162CrossRefGoogle Scholar
  79. Tribovillard N, Algeo TJ, Lyons T, Riboulleau A (2006) Trace metals as paleoredox and paleoproductivity proxies: an update. Chem Geol 232:12–32CrossRefGoogle Scholar
  80. Trolle-Wachmeister HG (1827) Svenska Vetenskapsakademien, Stockholm, Handlingar: 18.von Kobell, Wolfgang Xavier Franz (1835) Journal für praktische Chemie, Leipzig 4:80Google Scholar
  81. Wang SH, Yan W, Chen Z, Zhang N (2014) Rare earth elements in cold seep carbonates from the southwestern Dongsha area, northern South China Sea. Mar Pet Geol 57:482–493CrossRefGoogle Scholar
  82. Wang SH, Magalhães VH, Pinheiro LM, Liu JL, Yan W (2015) Tracing the composition, fluid source and formation conditions of the methane-derived authigenic carbonates in the Gulf of Cadiz with rare earth elements and stable isotopes. Mar Pet Geol 68:192–205CrossRefGoogle Scholar
  83. Webb GE, Kamber BS (2000) Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy. Geochim Cosmochim Acta 64(9):1557–1565CrossRefGoogle Scholar
  84. Wedepohl KH (1978) Manganese: abundance in common sediments and sedimentary rocks. In: Wedepohl KH (ed) Handbook of geochemistry. Springer, Berlin, pp 1–17Google Scholar
  85. Wignall PB, Myers KJ (1988) Interpreting benthic oxygen levels in mudrocks: a new approach. Geology 16:452–455CrossRefGoogle Scholar
  86. Wilson SA, Dipple GM, Power IM, Thom JM, Anderson RG, Raudsepp M, Gabites JE, Southam G (2009) Carbon dioxide fixation within mine wastes of ultramafic-hosted ore deposits: examples from the Clinton Creek and Cassiar chrysotile deposits, Canada. Econ Geol 104(1):95–112CrossRefGoogle Scholar
  87. Wilson SA, Harrison AL, Dipple GM, Power IM, Barker SLL, Mayer KU, Fallon SJ, Raudsepp M, Southam G (2014) Offsetting of CO2 emissions by air capture in mine tailings at the Mount Keith Nickel Mine, Western Australia: rates, controls and prospects for carbon neutral mining. Int J Greenh Gas Control 25:121–140CrossRefGoogle Scholar
  88. Wood SA (1990) The aqueous geochemistry of the rare-earth elements and yttrium: 1. Review of available low-temperature data for inorganic complexes and the inorganic REE speciation of natural waters. Chem Geol 88:99–125CrossRefGoogle Scholar
  89. Wright J, Seymour RS, Shaw HF (1984) REE and Nd isotopes in conodont apatite: variations with geological age and depositional environment. Spec Pap Geol Soc Am 196:325–340Google Scholar
  90. Wright J, Schrader H, Holser WT (1987) Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite. Geochim Cosmochim Acta 51(3):631–644CrossRefGoogle Scholar
  91. Yan RE, Xia ZK (1987) Hydromagnesite and Late Pleistocene Environment in Datong Basin, Shanxi Province. Acta Scicentiarum Nat Univ Pekin 2:98–110 (in Chinese) Google Scholar
  92. Yang XP, Zhu BQ, White PD (2007) Provenance of aeolian sediment in the Taklamakan Desert of western China, inferred from REE and major-elemental data. Quat Int 175(1):71–85CrossRefGoogle Scholar
  93. Yi HS, Lin JH, Zhao XX, Zhou KK, Li JP, Huang HG (2008) Geochemistry of rare earth elements and origin of positive europium anomaly in Miocene-Oligocene lacustrine carbonates from Tuotuohe basin of Tibetan plateau. Acta Sedimentol Sin 26:1–10 (in Chinese) Google Scholar
  94. Yu JJ, Zheng MP, Wu Q, Wang YS, Nie Z, Bu LZ (2015) Natural evaporation and crystallization of Dujiali salt lake water in Tibet. Chem Ind Eng Process 34:4172–4178 (in Chinese) Google Scholar
  95. Yutaka S, Keizo U, Nobuyasu M, Masanori K (1978) Thermal decomposition of hydromagnesite 4MgCO3·Mg(OH)2·4H2O. J Inorg Nucl Chem 40(1–3):979–982Google Scholar
  96. Zedef V, Russell M (2016) Rare earth element content of cryptocrystalline magnesites of Konya, Turkey. In: AIP conference proceedings, vol 1726, no 1. doi: 10.1063/1.4945942
  97. Zedef V, Russell MJ, Fallick AE, Hall AJ (2000) Genesis of vein stockwork and sedimentary magnesite and hydromagnesite deposits in the ultramafic terranes of southwestern Turkey: a stable isotope study. Econ Geol 95(2):131–134CrossRefGoogle Scholar
  98. Zhao YY, Nie FJ, Hou ZQ, Li ZQ, Zhao XT, Ma ZB (2007) Geochemistry of Targejia hot spring type cesium deposit in Tibet. Miner Depos 26:163–174 (in Chinese) Google Scholar
  99. Zhao YY, Zheng YF, Chen F (2009) Trace element and strontium isotope constraints on sedimentary environment of Ediacaran carbonates in southern Anhui, South China. Chem Geol 265(3–4):345–362CrossRefGoogle Scholar
  100. Zhao YY, Cui YB, Zhao XT (2010) Geological and geochemical features and significance of travertine in travertine-island from Zhabuye salt lake, Tibet, China. Geol Bull China 29(1):124–141 (in Chinese) Google Scholar
  101. Zheng MP (1997) An introduction to Saline Lakes on the Qinghai-Tibet Plateau. Springer, Dordrecht, pp 1–294Google Scholar
  102. Zheng MP, Xiang J, Wei XJ (1989) Saline Lake on the Qinghai-Xizang (Tibet) Plateau. Science Press, Beijing, pp 1–431 (in Chinese) Google Scholar
  103. Zheng XY, Zhang MG, Dong JH, Gao ZH, Xu C, Han ZM, Zhang BZ, Sun DP, Wang KJ (1995) Salt Lakes in Inner Mongolia. Science Press, Beijing, pp 196−218, 229−247 (in Chinese) Google Scholar
  104. Zheng XY, Zhang MG, Xu X, Li BX (2002) Saline lakes of China. Science Press, Beijing, pp 49–51 (in Chinese) Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of Earth Sciences and ResourcesChina University of GeosciencesBeijingChina
  2. 2.MLR Key Laboratory of Saline Lake Resources and Environments, Institute of Mineral ResourceChinese Academy of Geological Sciences (CAGS)BeijingChina
  3. 3.Trent School of the EnvironmentTrent UniversityPeterboroughCanada

Personalised recommendations