The Impact of ENSO Phase Transition on the Atmospheric Circulation, Precipitation and Temperature in the Middle East Autumn

  • Faranak Bahrami
  • Abbas Ranjbar SaadatabadiEmail author
  • Amir Hussain Meshkatee
  • Gholamali Kamali
Original Article


The impact of El Niño–Southern Oscillation (ENSO) phase transition on the atmospheric circulations, precipitation and temperature in the Middle East (ME) during the period of 1950–2018 autumn seasons were analyzed. ENSO events were selected based on the Oceanic Nino Index (ONI) and its phase transition from El Nino to La Nina (type 1) and from La Nina to El Nino (type 2) events during the study period. Monthly and climate means of data for precipitation, temperature, geopotential height, wind components (u and v) and Sea level pressure (SLP) obtained from National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis. Composites of the means and anomalies were derived from selected case studies of the ENSO phase transitions. Finally, the student’s t test is used to determine the significance of the composite means in each grid point. The results show during transitions, the SLP structure over the Atlantic region changes, in a way that pressure differences between Iceland low and the Azores high during type 1 (type 2) is minimum (Maximum) and also statistically significant at 95% confidence level which, these conditions are accompanied by statistically significant enhancing (decreasing) rainfall over the most parts of the ME. In addition, the variability of upper level geopotential height and zonal wind were found over the region which lead to favorable or less favorable conditions for infiltration of planetary Rossby waves to the ME in type 2 and type 1, respectively. Also this study reveals that, moisture flux transport from the adjoining seas to the ME is extremely different in both types, so that during type 2 (type 1), the ME receives significant (insignificant) amounts of moisture. This study therefore identified that most parts of the ME experienced statistically significant positive (negative) anomalies of precipitation during type 2 and type 1 respectively.


ENSO phase transition Atmospheric circulation Middle East Anomaly 



  1. Alizadeh, O.: Contrasting global teleconnection features of the eastern Pacific and central Pacific El Niño events. Dynam. Atmos. Ocean. 80, 139–154 (2017)CrossRefGoogle Scholar
  2. Almazroui, M., Islam, M.N., Jones, P.D., Athar, H., Rahman, M.A.: Recent climate change in the Arabian peninsula: seasonal rainfall and temperature climatology of Saudi Arabia for 1979–2009. Atmos. Res. 111, 29–45 (2012)CrossRefGoogle Scholar
  3. Angel, R., Valcárcel, T.: Teleconnections between ENSO and rainfall and drought in Puerto Rico. Int. J. Climatos. 38, 1190–1204 (2018)CrossRefGoogle Scholar
  4. Attada, R., Dasari, H.P., Chowdary, J.S., Yadav, R.K., Knio, O., Hoteit, I.: Surface air temperature variability over the Arabian Peninsula and its links to circulation patterns. Int. J. Climatol. 39, 445–464 (2018a)CrossRefGoogle Scholar
  5. Attada, R., Yadav, R.K., Kunchala, R.K., Dasari, H.P., Knio, O., Hoteit, I.: Prominent mode of summer surface air temperature variability and associated circulation anomalies over the Arabian peninsula. Atmos. Sci. Lett. 19(11), 1–7 (2018b). CrossRefGoogle Scholar
  6. Attada, R., Dasari, H.P., Parekh, A., Chowdary, J.S., Langodan, S., Knio, O., Hoteit, I.: The role of the Indian Summer Monsoon variability on Arabian Peninsula summer climate. Clim. Dyn. 52, 3389–3404 (2019)CrossRefGoogle Scholar
  7. Barlow, M., Cullen, H., Lyon, B.: Drought in central and Southwest Asia: La Nina, the warm pool, and Indian Ocean precipitation. J. Clim. 15, 697–700 (2001)CrossRefGoogle Scholar
  8. Bell, G.: Flavors climate variability: El Nino, La Nina, recurring jet stream patterns, multi-decadal variability. Community collaborate rain, hail and snow network (CoCoRaHS), (2013)Google Scholar
  9. Bjerknes, J.: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev. 97, 163–172 (1969)CrossRefGoogle Scholar
  10. Branstator, G.: Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic oscillation. J. Clim. 15, 1893–1910 (2002)CrossRefGoogle Scholar
  11. Chowdary, J.S., John, N., Gnanaseelan, C.: Interannual variability of surface air temperature over India: impact of ENSO and Indian Ocean Sea surface temperature. Int. J. Climatol. 34(2), 416–429 (2013)CrossRefGoogle Scholar
  12. Cullen, H.M., Kaplan, A., Arkin, P.A., deMenocal, P.B.: Impact of the North Atlantic oscillation on middle eastern and streamflow. Clim. Change. 55, 315–338 (2002)CrossRefGoogle Scholar
  13. Dasari, H.P., Langodan, S., Viswanadhapalli, Y., Vadlamudi, B.R., Papadopoulos, V.P., Hoteit, I.: ENSO influence on the interannual variability of the Red Sea convergence zone and associated rainfall. Int. J. Climatol. 38, 761–785 (2017)CrossRefGoogle Scholar
  14. Davey, M.K., Brookshaw, A., Ineson, S.: The probability of the impact of ENSO on precipitation and near-surface temperature. Clim. Risk Manag. 1, 5–24 (2014)CrossRefGoogle Scholar
  15. Dayan, U., Abramski, R.: Heavy rain in the Middle East related to unusual jet stream properties. Bull. Amer. Meteor. Soc. 64(10), 1138–1140 (1983)CrossRefGoogle Scholar
  16. El Kenawy, A.M., McCabe, M.F., Stenchikov, G.L., Raj, J.: Multi-decadal classification of synoptic weather types, observed trends and links to rainfall characteristics over Saudi Arabia. Front. Environ. Sci. 2, 1–15 (2014)CrossRefGoogle Scholar
  17. Feldl, N., Roe, G.H.: Synoptic weather patterns associated with intense ENSO rainfall in the Southwest United States. Geophys. Res. Lett. 37, 1–6 (2010)CrossRefGoogle Scholar
  18. Felis, T., Patzold, J., Loya, Y., Fine, M., Nawar, A.H., Wefer, G.: A coral oxygen isotope record from the northern Red Sea documenting NAO, ENSO, and North Pacific teleconnections on Middle East climate variability since the year 1750. Paleoceanogaphy. 15(6), 679–694 (2000)CrossRefGoogle Scholar
  19. Ganguli, P., Reddy, M.J.: Analysis of ENSO-based climate variability in modulating drought risks over western Rajasthan in India. J Earth syst sci. 122, 253–269 (2013)CrossRefGoogle Scholar
  20. Ghasemi, A.R., Khalili, D.: The influence of the Arctic oscillation on winter temperatures in Iran. Theor. App. Climatol. 85, 149–164 (2006)CrossRefGoogle Scholar
  21. Gill, A.E.: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc. 106, 447–462 (1980)CrossRefGoogle Scholar
  22. Gleick, P.H.: Water, drought, climate change, and conflict in Syria. Weather Clim. Soc. 6(3), 331–340 (2014)CrossRefGoogle Scholar
  23. Hasanean, H.M.: Wintertime surface temperature in Egypt in relation to the associated atmospheric circulation. Int. J. Climatol. 27, 985–999 (2004)CrossRefGoogle Scholar
  24. Hendon, H.H.: Indonesian rainfall variability: impacts of ENSO and local air-sea interaction. J. Clim. 16, 1775–1790 (2003)CrossRefGoogle Scholar
  25. Horel, J.D., Wallace, J.M.: Planetary scale atmospheric phenomena associated with the southern oscillation. Mon. Wea. Rev. 109, 813–829 (1981)CrossRefGoogle Scholar
  26. Iqbal, M.J., Hameed, S., Khan, F.: Influence of Azores high pressure on middle eastern rainfall. Theor. Appl. Climatol. 111, 211–221 (2012)CrossRefGoogle Scholar
  27. Kelley, C.P., Mohtadi, S., Cane, M.A., Seager, R., Kushnir, Y.: Climate change in the Fertile Crescent and implications of the recent Syrian drought. Proc. Natl. Acad. Sci. U S A. 112(11), 3241–3246 (2015)CrossRefGoogle Scholar
  28. Lashkari, H., Mohammadi, Z.: The role of Saudi Arabian sub-tropical high pressure on the rainfall systems on south and Southwest Iran. Phys Geog Res. 47(1), 73–90 (2015)Google Scholar
  29. Li, X., Li, C.H., Ling, G., Tan, Y.: The relationship between contiguous El Niño and La Niña revealed by self-organizing maps. J. Clim. 28, 8118–8134 (2015)CrossRefGoogle Scholar
  30. Lim, Y.K., Kim, K.Y.: ENSO impact on the space–time evolution of the regional Asian summer monsoons. J. Clim. 20, 2397–2415 (2007)CrossRefGoogle Scholar
  31. Mariotti, A.: How to impacts precipitation in southwest Central Asia. Geophys. Res. Lett. 34, 1–5 (2007)CrossRefGoogle Scholar
  32. Martius, O., Schwierz, C., Davies, H.C.: Far-upstream precursors of heavy precipitation events on the Alpine south-side. Quart. J. Roy. Meteor. Soc. 134, 417–428 (2008)CrossRefGoogle Scholar
  33. Martyn, D.: Climates of the world. PWN, Warszawa/Elsevier, Amsterdam, pp 435 (1992)Google Scholar
  34. Nazemosadat, M.J., Ghasemi, A.R.: Quantifying the ENSO-related shifts in the intensity and probability of drought and wet periods in Iran. J. Clim. 17, 4005–4018 (2004)CrossRefGoogle Scholar
  35. Newman, M., Sardeshmukh, P.D.: The impact of the annual cycle on the North Pacific/North American response to remote low-frequency forcing. J. Atmos. Sci. 55, 1336–1353 (1998)CrossRefGoogle Scholar
  36. Niranjan Kumar, K., Entekhabi, D., Molini, A.: Hydrological extremes in hyperarid regions: a diagnostic characterization of intense precipitation over the central Arabian peninsula. J. Geophys. Res. 120, 1637–1650 (2015)Google Scholar
  37. Niranjan Kumar, K., Ouarda, T.B.M.J., Sandeep, S., Ajayamohan, R.S.: Wintertime precipitation variability over the Arabian peninsula and its relationship with ENSO in the CAM4 simulations. Clim. Dyn. 47, 2443–2454 (2016)CrossRefGoogle Scholar
  38. Pagano, T.C., Mahani, S., Nazemosadat, M.J., Sorooshian, S.: Review of middle eastern hydro climatology and seasonal tele connections. IRN. J. of Sci. and Tech. 27(B1), 95–109 (2003)Google Scholar
  39. Peixoto, J.P., Oort, A.H.: The atmospheric branch of the hydrological cycle and climate. Variation of the global water budget. Reidel, 5–65 (1983). CrossRefGoogle Scholar
  40. Peixoto, J.P., Oort, A.H.: Physics of climate. AIP press (1992). ISBN 978-0-88318-712-8Google Scholar
  41. Penalba, O.C., Rivera, J.A.: Precipitation response to El Niño/La Niña events in southern South America – emphasis in regional drought occurrences. Adv. Geosci. 42, 1–14 (2016)CrossRefGoogle Scholar
  42. Pozo Vazquez, D., Esteban-Parra, M.J., Rodrigo, F.S., Castro-Diez, Y.: The association between ENSO and winter atmospheric circulation and temperature in the North Atlantic region. J. Clim. 14, 3408–3420 (2001)CrossRefGoogle Scholar
  43. Ropelewski, C.F., Halpert, M.S.: Global and regional scale precipitation associated with El Nino/southern oscillation. Mon. Wea. Rev. 115, 985–996 (1987)Google Scholar
  44. Roshani, A., Parak, F., Hejazizade, Z., Ghaemi, H.: Studying the Moisture Flux over South and Southwest of Iran: A Case Study from December 10 to 13, 1995 Rain Storm. Earth Science Research. 2(2), 34–39 (2013). CrossRefGoogle Scholar
  45. Sandeep, S., Ajayamohan, R.S.: Origin of cold bias over the Arabian Sea in climate models. Sci. Rep. 4, 6403 (2014)CrossRefGoogle Scholar
  46. Seager, R., Harnik, N., Robinson, W.A., Kushnir, Y., Ting, M., Huang, H.P., Velez, J.: Mechanisms of ENSO-forcing of hemispherically symmetric precipitation variability. Q. J. R. Meteorol. Soc. 131, 1501–1527 (2004)CrossRefGoogle Scholar
  47. Seong Kug, J., Seop Ahn, M., Kyung Sung, M., Wook Yeh, S., Sik Min, H., Ho Kim, Y.: Statistical relationship between two types of El Nino events and climate variation over the Korean peninsula. Asia-Pacific J. Atoms. Sci. 46(4), 467–474 (2010)CrossRefGoogle Scholar
  48. Shaman, J.: The seasonal effects of ENSO on European precipitation: observational analysis. J. Clim. 27(3), 1010–1028 (2014)CrossRefGoogle Scholar
  49. Shimizu, M.H., Ambrizzi, T.: MJO influence on ENSO effects in precipitation and temperature over South America. Theor. Appl. Climatol. 124(1–2), 291–301 (2015). CrossRefGoogle Scholar
  50. Singh, P., Gnanaseelan, C., Chowdary, J.S.: North-east monsoon rainfall extremes over the southern peninsular India and their association with El Niño. Dynam. Atmos. Ocean. 80, 1–11 (2017)CrossRefGoogle Scholar
  51. Trenberth, K.E.: Signal versus noise in the southern oscillation. Mon. Wea. Rev. 112, 326–332 (1984)CrossRefGoogle Scholar
  52. Trenberth, K.E.: The definition of El Niño. Bull. Amer. Meteor. Soc. 78(12), 2771–2777 (1998)CrossRefGoogle Scholar
  53. Trenberth, K.E., Stepaniak, P.D.: Indices of El Nino evolution. J. Clim. 14, 1697–1701 (2001)CrossRefGoogle Scholar
  54. Wolter, K., Timlin, M.S.: Measuring the strength of ENSO El Nino/southern oscillation behavior since 1871 as diagnosed in an extended multivariate ENSO index (MEI.Ext). Int. J. Climatol. 31, 1074–1087 (2011)CrossRefGoogle Scholar
  55. Wolter, K., Timlin, M.S.: Measuring the strength of ENSO events how does 1997/98 rank. Weather. 53, 315–324 (2012)CrossRefGoogle Scholar
  56. Yadav, R.K.: Kumar, K.R, Rajeevan, M.: increasing influence of ENSO and decreasing influence of AO/NAO in the recent decades over Northwest India winter precipitation. J. Geophys. Res. 114, 1–12 (2009)CrossRefGoogle Scholar
  57. Yao, S., Huang, Q.: An analysis of extreme intraseasonal rainfall events during January–march 2010 over eastern China. Dynam. Atmos. Ocean. 75, 22–32 (2016)CrossRefGoogle Scholar
  58. Yeh, S.W., Kug, J.S., An, S.I.: Recent progress on two types of El Nino: observations, dynamics and future changes. Asia-Pac. J. Atoms. Sci. 50, 69–81 (2014). CrossRefGoogle Scholar
  59. Zhang, C., Luo, J.J., Li, S.: Impacts of tropical Indian and Atlantic Ocean warming on the occurrence of the 2017/2018 La Niña. Geophys. Res. Lett. 46, 3435–3445 (2019)CrossRefGoogle Scholar

Copyright information

© Korean Meteorological Society and Springer Nature B.V. 2019

Authors and Affiliations

  • Faranak Bahrami
    • 1
  • Abbas Ranjbar Saadatabadi
    • 2
    Email author
  • Amir Hussain Meshkatee
    • 1
  • Gholamali Kamali
    • 1
  1. 1.Department of Earth Science, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Atmospheric Science and Meteorological Research CenterTehranIran

Personalised recommendations