Advertisement

Asia-Pacific Journal of Atmospheric Sciences

, Volume 55, Issue 4, pp 539–556 | Cite as

High Resolution Urban Air Quality Modeling by Coupling CFD and Mesoscale Models: a Review

  • Rakesh KadaveruguEmail author
  • Asheesh Sharma
  • Chandrasekhar MatliEmail author
  • Rajesh Biniwale
Review Paper
  • 393 Downloads

Abstract

According to World Health Organization, 9 out of 10 people breathe polluted air and the ambient air pollution accounts for nearly 4.2 million early deaths worldwide. There is an urgent need for scientific management of urban air systems. Mathematical modeling of air quality helps the researchers and urban authorities in devising scientific management plans for mitigation of the associated impacts. We present an organized review of the broad aspects related to urban air quality modeling such as – urban microclimate, geospatial data, chemical transport models, computational fluid dynamics (CFD) models and integration of CFD and mesoscale models. The paper also discusses about the influence of urban land scape features on air quality, accuracy of emission inventory and model validation methods. The present review provides a vantage point to the researchers in the emerging field of high resolution urban air quality modeling for devising the location specific mitigation plans for the scientific management of the clean air.

Keywords

Chemical transport models Computational fluid dynamics Numerical weather models Urbanization Urban air quality Urban micro-climate 

Abbreviations

ABL

Atmospheric boundary layer

ACCMIP

Atmospheric chemistry & climate model intercomparison project

AIRS

Atmospheric infrared sounder

AOD

Aerosol optical depth

AppEEARS

Application for extracting and exploring analysis ready samples

CALPUFF

California puff model

CAMS-GLOB-BIO

CAMS (Copernicus atmosphere monitoring service)-Global-Biogenic emissions

CAMx

Comprehensive air quality model with extensions

CB-5

Carbon bond −5

CBM-Z

Carbon bond mechanism version -Z

CFD

Computational fluid dynamics

CMAQ

Community multi-scale air quality model

CTM

Chemical transport model

DEM

Digital elevation model

DNS

Direct numerical simulation

DSM

Digital surface model

EDGAR

Emission database for global atmospheric research

F-TUV

Fast troposphere ultraviolet visible photolysis scheme

GEIA

Global emissions initiative

GOCART

Global ozone chemistry aerosol radiation and transport

IASI

Infrared atmospheric sounding interferometer

ISL

Inertial sub-layer

LAADS

The Level-1 and atmosphere archive & distribution system

LES

Large eddy simulation

LiDAR

Light detection and ranging

LOD

Level of detail

LPDAAC

Land processes distributed active archive center

MADE

Modal aerosol dynamics model for europe

MAM

Modal AEROSOL MODule

MEGAN

Model of emissions of gases and aerosols from nature

MISR

Multi-angle imaging spectroradiometer

MM5

Mesoscale model 5th generation

MODIS

Moderate resolution imaging spectroradiometer

MOPITT

Measurement of pollution in the troposphere

MOSAIC

Model for simulating aerosol interactions and chemistry

NASA

The National aeronautics and space administration

NMVOC

Non-methane volatile organic compound

OMI

Ozone monitoring instrument

OpenFOAM

Open field operation and manipulation

OSM

Open street maps

PBL

Planetary boundary layer

POET

Precursors of ozone and their effects in the troposphere

RACM

Regional atmospheric chemistry mechanism

RADM2

Regional acid deposition model-2nd version

RANS

Reynolds averaged navier-stokes

RETRO

Reanalysis of the TROpospheric chemical composition

RSL

Roughness sub-layer

SIMPLE

Semi-implicit method for pressure linked eqs.

SL

Surface layer

SORGAM

Secondary organic aerosol model

SUMO

Simulation of URBAN Mobility

TES

Tropospheric emission spectrometer

TKE

Turbulent kinetic energy

UBL

Urban boundary layer

UCL

Urban canopy layer

UCM

Urban canopy model

UHI

Urban heat island

VBS

Volatility basis set

WHO

World health organization

WRF-Chem

Weather research and forecast – chemistry

Notes

Acknowledgments

Authors wish to thank Director of CSIR-National Environmental Engineering Research Institute, Nagpur and Director of National Institute of Technology, Warangal for the support. Authors also acknowledge the NEERI’s KRC No.CSIR-NEERI/KRC/2018/JULY/CTMD/1.

References

  1. Abhijith, K.V., Kumar, P., Gallagher, J., McNabola, A., Baldauf, R., Pilla, F., Broderick, B., di Sabatino, S., Pulvirenti, B.: Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments – a review. Atmos. Environ. 162, 71–86 (2017).  https://doi.org/10.1016/j.atmosenv.2017.05.014 CrossRefGoogle Scholar
  2. Affum, H.A., Akaho, E.H.K., Niemela, J.J., Armenio, V., Danso, K.A.: Validating the California puff (CALPUFF) modelling system using an industrial area in Accra, Ghana as a Case Study. Open J. Air Pollut. 5, 27–36 (2016)CrossRefGoogle Scholar
  3. Anderson, G.: An Evaluation of Dispersion Formulas: Final Report. Travellers Research Corp. (1969)Google Scholar
  4. Azid, A., Juahir, H., Ezani, E., Toriman, M.E., Endut, A., Rahman, M.N.A., Yunus, K., Kamarudin, M.K.A., Hasnam, C.N.C., Saudi, A.S.M., Umar, R.: Identification source of variation on regional impact of air quality pattern using chemometric. Aerosol Air Qual. Res. 15, 1545–1558 (2015).  https://doi.org/10.4209/aaqr.2014.04.0073 CrossRefGoogle Scholar
  5. Baik, J.-J., Park, S.-B., Kim, J.-J.: Urban flow and dispersion simulation using a CFD model coupled to a mesoscale model. J. Appl. Meteorol. Climatol. 48, 1667–1681 (2009).  https://doi.org/10.1175/2009JAMC2066.1 CrossRefGoogle Scholar
  6. Baklanov, A.A., Nuterman, R.B.: Multi-scale atmospheric environment modelling for urban areas. Adv. Sci. Res. 3, 53–57 (2009).  https://doi.org/10.5194/asr-3-53-2009 CrossRefGoogle Scholar
  7. Baklanov, A., Mestayer, P.G., Clappier, A., Zilitinkevich, S., Joffre, S., Mahura, A., Nielsen, N.W.: Towards improving the simulation of meteorological fields in urban areas through updated/advanced surface fluxes description. Atmos. Chem. Phys. 8, 523–543 (2008).  https://doi.org/10.5194/acp-8-523-2008 CrossRefGoogle Scholar
  8. Baklanov, A., Schlünzen, K., Suppan, P., Baldasano, J., Brunner, D., Aksoyoglu, S., Carmichael, G., Douros, J., Flemming, J., Forkel, R., Galmarini, S., Gauss, M., Grell, G., Hirtl, M., Joffre, S., Jorba, O., Kaas, E., Kaasik, M., Kallos, G., Kong, X., Korsholm, U., Kurganskiy, A., Kushta, J., Lohmann, U., Mahura, A., Manders-Groot, A., Maurizi, A., Moussiopoulos, N., Rao, S.T., Savage, N., Seigneur, C., Sokhi, R.S., Solazzo, E., Solomos, S., Sørensen, B., Tsegas, G., Vignati, E., Vogel, B., Zhang, Y.: Online coupled regional meteorology chemistry models in Europe: current status and prospects. Atmos. Chem. Phys. 14, 317–398 (2014).  https://doi.org/10.5194/acp-14-317-2014 CrossRefGoogle Scholar
  9. Baklanov, A., Molina, L.T., Gauss, M.: Megacities, air quality and climate. Atmos. Environ. 126, 235–249 (2016).  https://doi.org/10.1016/j.atmosenv.2015.11.059 CrossRefGoogle Scholar
  10. Banerjee, T., Murari, V., Kumar, M., Raju, M.P.: Source apportionment of airborne particulates through receptor modeling: Indian scenario. Atmos. Res. 164–165, 167–187 (2015).  https://doi.org/10.1016/j.atmosres.2015.04.017 CrossRefGoogle Scholar
  11. Batterman, S., Chambliss, S., Isakov, V.: Spatial resolution requirements for traffic-related air pollutant exposure evaluations. Atmos. Environ. 94, 518–528 (2014).  https://doi.org/10.1016/j.atmosenv.2014.05.065 CrossRefGoogle Scholar
  12. Bechtel, B., Zakšek, K., Oßenbrügge, J., Kaveckis, G., Böhner, J.: Towards a satellite based monitoring of urban air temperatures. Sustain. Cities Soc. 34, 22–31 (2017).  https://doi.org/10.1016/j.scs.2017.05.018 CrossRefGoogle Scholar
  13. Beevers, S.D., Kitwiroon, N., Williams, M.L., Carslaw, D.C.: One way coupling of CMAQ and a road source dispersion model for fine scale air pollution predictions. Atmos. Environ. 59, 47–58 (2012).  https://doi.org/10.1016/j.atmosenv.2012.05.034 CrossRefGoogle Scholar
  14. Bhati, S., Mohan, M.: WRF model evaluation for the urban heat island assessment under varying land use/land cover and reference site conditions. Theor. Appl. Climatol. 126, 385–400 (2016).  https://doi.org/10.1007/s00704-015-1589-5 CrossRefGoogle Scholar
  15. Biljecki, F., Ledoux, H., Stoter, J.: Generating 3D city models without elevation data. Comput. Environ. Urban. Syst. 64, 1–18 (2017)CrossRefGoogle Scholar
  16. Blocken, B.: 50 years of computational wind engineering: past, present and future. J. Wind Eng. Ind. Aerodyn. 129, 69–102 (2014).  https://doi.org/10.1016/j.jweia.2014.03.008 CrossRefGoogle Scholar
  17. Blocken, B.: Computational fluid dynamics for urban physics: importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations. Build. Environ. 91, 219–245 (2015).  https://doi.org/10.1016/j.buildenv.2015.02.015 CrossRefGoogle Scholar
  18. Bonner, C.S., Ashley, M.C.B., Cui, X., Feng, L., Gong, X., Lawrence, J.S., Luong-van, D.M., Shang, Z., Storey, J.W.V., Wang, L., Yang, H., Yang, J., Zhou, X., Zhu, Z.: Thickness of the atmospheric boundary layer above dome a, Antarctica, during 2009. Publ. Astron. Soc. Pac. 122, 1122–1131 (2010).  https://doi.org/10.1086/656250 CrossRefGoogle Scholar
  19. Borrego, C., Amorim, J.H., Tchepel, O., Dias, D., Rafael, S., Sá, E., Pimentel, C., Fontes, T., Fernandes, P., Pereira, S.R., Bandeira, J.M., Coelho, M.C.: Urban scale air quality modelling using detailed traffic emissions estimates. Atmos. Environ. 131, 341–351 (2016).  https://doi.org/10.1016/j.atmosenv.2016.02.017 CrossRefGoogle Scholar
  20. Bruse, M., Fleer, H.: Simulating surface–plant–air interactions inside urban environments with a three dimensional numerical model. Environ. Model Softw. 13, 373–384 (1998).  https://doi.org/10.1016/S1364-8152(98)00042-5 CrossRefGoogle Scholar
  21. Byun, D., Schere, K.L.: Review of the governing equations, computational algorithms, and other components of the Models-3 community multiscale air quality (CMAQ) modeling system. Appl. Mech. Rev. 59, 51–77 (2006).  https://doi.org/10.1115/1.2128636 CrossRefGoogle Scholar
  22. Carslaw, D.C., Ropkins, K.: Openair — an R package for air quality data analysis. Environ. Model Softw. 27–28, 52–61 (2012).  https://doi.org/10.1016/j.envsoft.2011.09.008 CrossRefGoogle Scholar
  23. Cetin Dogruparmak, S., Pekey, H., Arslanbas, D.: Odor dispersion modeling with CALPUFF: case study of a waste and residue treatment incineration and utilization plant in Kocaeli, Turkey. Environ. Forensic. 19, 79–86 (2018)CrossRefGoogle Scholar
  24. Chang, C.-H., Meroney, R.N.: Numerical and physical modeling of bluff body flow and dispersion in urban street canyons. J. Wind Eng. Ind. Aerodyn. 89, 1325–1334 (2001).  https://doi.org/10.1016/S0167-6105(01)00129-5 CrossRefGoogle Scholar
  25. Chatani, S., Morikawa, T., Nakatsuka, S., Matsunaga, S., Minoura, H.: Development of a framework for a high-resolution, three-dimensional regional air quality simulation and its application to predicting future air quality over Japan. Atmos. Environ. 45, 1383–1393 (2011).  https://doi.org/10.1016/j.atmosenv.2010.12.036 CrossRefGoogle Scholar
  26. Chavez, M., Hajra, B., Stathopoulos, T., Bahloul, A.: Assessment of near-field pollutant dispersion: effect of upstream buildings. J. Wind Eng. Ind. Aerodyn. 104–106, 509–515 (2012).  https://doi.org/10.1016/j.jweia.2012.02.019 CrossRefGoogle Scholar
  27. Chen, B., Liu, S., Miao, Y., Wang, S., Li, Y.: Construction and validation of an urban area flow and dispersion model on building scales. Acta Meteorologica Sinica. 27, 923–941 (2013)CrossRefGoogle Scholar
  28. Ching J, Byun D. Introduction to the Models-3 framework and the Community Multiscale Air Quality model (CMAQ). Science Algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) Modeling System 1999Google Scholar
  29. Ciarelli, G., Aksoyoglu, S., Haddad, I.E., Bruns, E.A., Crippa, M., Poulain, L., et al.: Modelling winter organic aerosol at the European scale with CAMx: evaluation and source apportionment with a VBS parameterization based on novel wood burning smog chamber experiments. Atmos. Chem. Phys. 17, 7653–7669 (2017)CrossRefGoogle Scholar
  30. Coats Jr., C.J.: High-performance algorithms in the Sparse Matrix Operator Kernel Emissions (SMOKE) modeling system. In: Proc. Ninth AMS Joint Conference on Applications of Air Pollution Meteorology with A&WMA, Amer. Meteor. Soc., pp. 584–588. Citeseer, Atlanta (1996)Google Scholar
  31. Cochran, L., Derickson, R., Meroney, R.N., Sharp, H.: On what new building project managers need to know about wind engineering. Proceedings of the 17th Australasian Wind Engineering Society Workshop, February 11e13, Wellington (2015)Google Scholar
  32. Coirier, W.J., Fricker, D.M., Furmanczyk, M., Kim, S.: A computational fluid dynamics approach for urban area transport and dispersion modeling. Environ. Fluid Mech. 5, 443–479 (2005).  https://doi.org/10.1007/s10652-005-0299-4 CrossRefGoogle Scholar
  33. Daftry, S., Hoppe, C., Bischof, H.: Building with drones: Accurate 3D facade reconstruction using MAVs. In: IEEE International Conference on Robotics and Automation (ICRA), vol. 2015, pp. 3487–3494. IEEE, Seattle (2015).  https://doi.org/10.1109/ICRA.2015.7139681 CrossRefGoogle Scholar
  34. de la Paz, D., Vedrenne, M., Borge, R., Lumbreras, J., de Andrés, J.M., Pérez, J., et al.: Modelling Saharan dust transport into the Mediterranean basin with CMAQ. Atmos. Environ. 70, 337–350 (2013)CrossRefGoogle Scholar
  35. Demographia. Demographia World Urban Areas: 14th Annual Edition:201804. 2018Google Scholar
  36. Easom, G.: Improved turbulence models for computational wind engineering. PhD Thesis. University of Nottingham (2000)Google Scholar
  37. EEA. EMEP/EEA air pollutant emission inventory guidebook. 2009Google Scholar
  38. El Fazziki, A., Benslimane, D., Sadiq, A., Ouarzazi, J., Sadgal, M.: An agent based traffic regulation system for the roadside air quality control. IEEE Access. 5, 13192–13201 (2017).  https://doi.org/10.1109/ACCESS.2017.2725984 CrossRefGoogle Scholar
  39. El-Harbawi, M.: Air quality modelling, simulation, and computational methods: a review. Environ. Rev. 21, 149–179 (2013).  https://doi.org/10.1139/er-2012-0056 CrossRefGoogle Scholar
  40. FAIRMODE. FAIRMODE - The Forum for Air quality Modelling. 2018Google Scholar
  41. Fernandes A, Riffler M, Ferreira J, Wunderle S, Borrego C, Tchepel O. Comparisons of aerosol optical depth provided by seviri satellite observations and CAMx air quality modelling. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2015;XL-7/W3:187–193.  https://doi.org/10.5194/isprsarchives-XL-7-W3-187-2015 CrossRefGoogle Scholar
  42. Fisher, B., Kukkonen, J., Piringer, M., Rotach, M.W., Schatzmann, M.: Meteorology applied to urban air pollution problems: concepts from COST 715. Atmos. Chem. Phys. 6, 555–564 (2006).  https://doi.org/10.5194/acp-6-555-2006 CrossRefGoogle Scholar
  43. Fitch, J.P., Raber, E., Imbro, D.R.: Technology challenges in responding to biological or chemical attacks in the civilian sector. Science. 302, 1350–1354 (2003)CrossRefGoogle Scholar
  44. Franzese, P., Huq, P.: Urban dispersion modelling and experiments in the daytime and nighttime atmosphere. Bound.-Layer Meteorol. 139, 395–409 (2011).  https://doi.org/10.1007/s10546-011-9593-5 CrossRefGoogle Scholar
  45. Frueh, C., Zakhor, A.: Constructing 3D city models by merging ground-based and airborne views. Computer Vision and Pattern Recognition, 2003. In: Proceedings. 2003 IEEE Computer Society Conference on, vol. 2, pp. II–562. IEEE (2003)Google Scholar
  46. Georgiou, G.K., Christoudias, T., Proestos, Y., Kushta, J., Hadjinicolaou, P., Lelieveld, J.: Air quality modelling in the summer over the eastern Mediterranean using WRF-Chem: chemistry and aerosol mechanism intercomparison. Atmos. Chem. Phys. 18, 1555–1571 (2018).  https://doi.org/10.5194/acp-18-1555-2018 CrossRefGoogle Scholar
  47. Granier C, Lamarque JF, Mieville A, Muller JF, Olivier J, Orlando J, et al. POET, a database of surface emissions of ozone precursors. 2005Google Scholar
  48. Grell GA, Dudhia J, Stauffer DR. A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5) 1994Google Scholar
  49. Grell, G.A., Emeis, S., Stockwell, W.R., Schoenemeyer, T., Forkel, R., Michalakes, J., Knoche, R., Seidl, W.: Application of a multiscale, coupled MM5/chemistry model to the complex terrain of the VOTALP valley campaign. Atmos. Environ. 34, 1435–1453 (2000).  https://doi.org/10.1016/S1352-2310(99)00402-1 CrossRefGoogle Scholar
  50. Grell, G.A., Peckham, S.E., Schmitz, R., McKeen, S.A., Frost, G., Skamarock, W.C., et al.: Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 39, 6957–6975 (2005).  https://doi.org/10.1016/j.atmosenv.2005.04.027 CrossRefGoogle Scholar
  51. Grimmond, C.S.B., Blackett, M., Best, M.J., Barlow, J., Baik, J.-J., Belcher, S.E., Bohnenstengel, S.I., Calmet, I., Chen, F., Dandou, A., Fortuniak, K., Gouvea, M.L., Hamdi, R., Hendry, M., Kawai, T., Kawamoto, Y., Kondo, H., Krayenhoff, E.S., Lee, S.H., Loridan, T., Martilli, A., Masson, V., Miao, S., Oleson, K., Pigeon, G., Porson, A., Ryu, Y.H., Salamanca, F., Shashua-Bar, L., Steeneveld, G.J., Tombrou, M., Voogt, J., Young, D., Zhang, N.: The international urban energy balance models comparison project: first results from phase 1. J Appl Meteor Climatol. 49, 1268–1292 (2010).  https://doi.org/10.1175/2010JAMC2354.1 CrossRefGoogle Scholar
  52. Grimmond, C.S.B., Blackett, M., Best, M.J., Baik, J.-J., Belcher, S.E., Beringer, J., Bohnenstengel, S.I., Calmet, I., Chen, F., Coutts, A., Dandou, A., Fortuniak, K., Gouvea, M.L., Hamdi, R., Hendry, M., Kanda, M., Kawai, T., Kawamoto, Y., Kondo, H., Krayenhoff, E.S., Lee, S.H., Loridan, T., Martilli, A., Masson, V., Miao, S., Oleson, K., Ooka, R., Pigeon, G., Porson, A., Ryu, Y.H., Salamanca, F., Steeneveld, G.J., Tombrou, M., Voogt, J.A., Young, D.T., Zhang, N.: Initial results from phase 2 of the international urban energy balance model comparison. Int. J. Climatol. 31, 244–272 (2011).  https://doi.org/10.1002/joc.2227 CrossRefGoogle Scholar
  53. Gromke, C., Blocken, B.: Influence of avenue-trees on air quality at the urban neighborhood scale. Part I: quality assurance studies and turbulent Schmidt number analysis for RANS CFD simulations. Environ. Pollut. 196, 214–223 (2015).  https://doi.org/10.1016/j.envpol.2014.10.016 CrossRefGoogle Scholar
  54. Gros, A., Bozonnet, E., Inard, C.: Cool materials impact at district scale—coupling building energy and microclimate models. Sustain. Cities Soc. 13, 254–266 (2014).  https://doi.org/10.1016/j.scs.2014.02.002 CrossRefGoogle Scholar
  55. Gsella, A., de Meij, A., Kerschbaumer, A., Reimer, E., Thunis, P., Cuvelier, C.: Evaluation of MM5, WRF and TRAMPER meteorology over the complex terrain of the Po Valley, Italy. Atmos. Environ. 89, 797–806 (2014).  https://doi.org/10.1016/j.atmosenv.2014.03.019 CrossRefGoogle Scholar
  56. Gunwani, P., Mohan, M.: Sensitivity of WRF model estimates to various PBL parameterizations in different climatic zones over India. Atmos. Res. 194, 43–65 (2017).  https://doi.org/10.1016/j.atmosres.2017.04.026 CrossRefGoogle Scholar
  57. Gutschow, J., Jeffery, L., Gieseke, R., Gebel, R., Stevens, D., Krapp, M., et al.: The PRIMAP-hist national historical emissions time series (1850-2014). GFZ Data Services. (2016).  https://doi.org/10.2904/EDGARv4.2
  58. Hennemuth, B., Lammert, A.: Determination of the atmospheric boundary layer height from radiosonde and Lidar backscatter. Bound.-Layer Meteorol. 120, 181–200 (2006).  https://doi.org/10.1007/s10546-005-9035-3 CrossRefGoogle Scholar
  59. Hirschmuller, H.: Stereo processing by Semiglobal matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 30, 328–341 (2008).  https://doi.org/10.1109/TPAMI.2007.1166 CrossRefGoogle Scholar
  60. Holben, B.N., Tanré, D., Smirnov, A., Eck, T.F., Slutsker, I., Abuhassan, N., Newcomb, W.W., Schafer, J.S., Chatenet, B., Lavenu, F., Kaufman, Y.J., Castle, J.V., Setzer, A., Markham, B., Clark, D., Frouin, R., Halthore, R., Karneli, A., O'Neill, N.T., Pietras, C., Pinker, R.T., Voss, K., Zibordi, G.: An emerging ground-based aerosol climatology: aerosol optical depth from AERONET. J. Geophys. Res. Atmos. 106, 12067–12097 (2001).  https://doi.org/10.1029/2001JD900014 CrossRefGoogle Scholar
  61. Hu, X.-M., Nielsen-Gammon, J.W., Zhang, F.: Evaluation of three planetary boundary layer schemes in the WRF model. J. Appl. Meteorol. Climatol. 49, 1831–1844 (2010).  https://doi.org/10.1175/2010JAMC2432.1 CrossRefGoogle Scholar
  62. Huq, P., Franzese, P.: Measurements of turbulence and dispersion in three idealized urban canopies with different aspect ratios and comparisons with a Gaussian plume model. Bound.-Layer Meteorol. 147, 103–121 (2013).  https://doi.org/10.1007/s10546-012-9780-z CrossRefGoogle Scholar
  63. Isakov, V., Arunachalam, S., Batterman, S., Bereznicki, S., Burke, J., Dionisio, K., Garcia, V., Heist, D., Perry, S., Snyder, M., Vette, A.: Air quality modeling in support of the near-road exposures and effects of urban air pollutants study (NEXUS). Int. J. Environ. Res. Public Health. 11, 8777–8793 (2014).  https://doi.org/10.3390/ijerph110908777 CrossRefGoogle Scholar
  64. Jacobson, M.Z.: GATOR-GCMM: a global- through urban-scale air pollution and weather forecast model: 1. Model design and treatment of subgrid soil, vegetation, roads, rooftops, water, sea ice, and snow. Journal of Geophysical Research: Atmospheres. 106, 5385–5401 (2001).  https://doi.org/10.1029/2000JD900560 CrossRefGoogle Scholar
  65. Janhäll, S.: Review on urban vegetation and particle air pollution – deposition and dispersion. Atmos. Environ. 105, 130–137 (2015).  https://doi.org/10.1016/j.atmosenv.2015.01.052 CrossRefGoogle Scholar
  66. Janicke. Austal2000-Program Documentation of Version 2.4. 2011Google Scholar
  67. Jeanjean, A.P.R., Monks, P.S., Leigh, R.J.: Modelling the effectiveness of urban trees and grass on PM2.5 reduction via dispersion and deposition at a city scale. Atmos. Environ. 147, 1–10 (2016).  https://doi.org/10.1016/j.atmosenv.2016.09.033 CrossRefGoogle Scholar
  68. Jeanjean, A.P.R., Buccolieri, R., Eddy, J., Monks, P.S., Leigh, R.J.: Air quality affected by trees in real street canyons: the case of Marylebone neighbourhood in Central London. Urban For. Urban Green. 22, 41–53 (2017).  https://doi.org/10.1016/j.ufug.2017.01.009 CrossRefGoogle Scholar
  69. Jensen, S.S., Ketzel, M., Becker, T., Christensen, J., Brandt, J., Plejdrup, M., Winther, M., Nielsen, O.K., Hertel, O., Ellermann, T.: High resolution multi-scale air quality modelling for all streets in Denmark. Transp. Res. Part D: Transp. Environ. 52, 322–339 (2017).  https://doi.org/10.1016/j.trd.2017.02.019 CrossRefGoogle Scholar
  70. Jeon, B.-G., Lee, S.-H.: A Impact Analysis of Air Quality by Air Pollution Control Facilities Improvement on Point Source Pollution. Journal of the Korea Academia-Industrial cooperation Society. 16, 2876–2882 (2015).CrossRefGoogle Scholar
  71. Jones, W., Launder, B.: The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transf. 15, 301–314 (1972).  https://doi.org/10.1016/0017-9310(72)90076-2 CrossRefGoogle Scholar
  72. Jose, R.S., Pérez, J.L., González, R.M., Pecci, J., Palacios, M.: Improving air quality modelling systems by using on-line wild land fire forecasting tools coupled into WRF/Chem simulations over Europe. Urban Climate. 22, 2–18 (2017).  https://doi.org/10.1016/j.uclim.2016.09.001 CrossRefGoogle Scholar
  73. Kadaverugu, R.: Framework for mathematical modeling of Soil-Tree system. Model. Earth Syst. Environ. 1, 17 (2015).  https://doi.org/10.1007/s40808-015-0017-2
  74. Kadaverugu, R.: Modeling of subsurface horizontal flow constructed wetlands using OpenFOAM®. Model. Earth Syst. Environ. 2, 55 (2016).  https://doi.org/10.1007/s40808-016-0111-0
  75. Kang, Y.-H., Song, S.-K., Hwang, M.-K., Jeong, J.-H., Kim, Y.-K.: Impacts of detailed land-use types and urban heat in an urban canopy model on local meteorology and ozone levels for air quality modeling in a Coastal City, Korea. Terr. Atmos. Ocean. Sci. 27, 877–891 (2016).  https://doi.org/10.3319/TAO.2016.01.13.01(A) CrossRefGoogle Scholar
  76. Kariminia, S., Ahmad, S.S., Saberi, A.: Microclimatic conditions of an Urban Square: role of built environment and geometry. Procedia – Soc. Behav. Sci. 170, 718–727 (2015).  https://doi.org/10.1016/j.sbspro.2015.01.074 CrossRefGoogle Scholar
  77. Khaniabadi, Y.O., Sicard, P., Taiwo, A.M., De Marco, A., Esmaeili, S., Rashidi, R.: Modeling of particulate matter dispersion from a cement plant: upwind-downwind case study. J. Environ. Chem. Eng. 6, 3104–3110 (2018)CrossRefGoogle Scholar
  78. Kim, S.-W., Heckel, A., McKeen, S.A., Frost, G.J., Hsie, E.-Y., Trainer, M.K., et al.: Satellite-observed U.S. power plant NO x$ emission reductions and their impact on air quality. Geophys. Res. Lett. 33, 33 (2006).  https://doi.org/10.1029/2006GL027749 CrossRefGoogle Scholar
  79. Kocaman, S., Zhang, L., Gruen, A., Poli, D.: 3D City Modeling from High-Resolution Satellite Images, pp. 14–16. Proceedings of ISPRS Workshop on Topographic Mapping from Space, Ankara (2006)Google Scholar
  80. Kondo, H., Genchi, Y., Kikegawa, Y., Ohashi, Y., Yoshikado, H., Komiyama, H.: Development of a multi-layer urban canopy model for the analysis of energy consumption in a big City: structure of the urban canopy model and its basic performance. Bound.-Layer Meteorol. 116, 395–421 (2005).  https://doi.org/10.1007/s10546-005-0905-5 CrossRefGoogle Scholar
  81. Krajzewicz, D., Erdmann, J., Behrisch, M., Bieker, L.: Recent development and applications of SUMO – Simulation of Urban Mobility. International Journal On Advances in Systems and Measurements, 5, 128–135 (2012)Google Scholar
  82. Kraus, K.: Photogrammetry: Geometry from Images and Laser Scans. Walter de Gruyter (2011)Google Scholar
  83. Kuik, F., Lauer, A., Churkina, G., van der Gon HAC, D., Fenner, D., Mar, K.A., et al.: Air quality modelling in the Berlin–Brandenburg region using WRF-Chem v3.7.1: sensitivity to resolution of model grid and input data. Geosci. Model Dev. 9, 4339–4363 (2016).  https://doi.org/10.5194/gmd-9-4339-2016 CrossRefGoogle Scholar
  84. Kumar, P., Morawska, L., Martani, C., Biskos, G., Neophytou, M., Di Sabatino, S., et al.: The rise of low-cost sensing for managing air pollution in cities. Environ. Int. 75, 199–205 (2015).  https://doi.org/10.1016/j.envint.2014.11.019 CrossRefGoogle Scholar
  85. Kurokawa, J., Ohara, T., Morikawa, T., Hanayama, S., Janssens-Maenhout, G., Fukui, T., Kawashima, K., Akimoto, H.: Emissions of air pollutants and greenhouse gases over Asian regions during 2000–2008: regional emission inventory in ASia (REAS) version 2. Atmos. Chem. Phys. 13, 11019–11058 (2013).  https://doi.org/10.5194/acp-13-11019-2013 CrossRefGoogle Scholar
  86. Kusaka, H., Kondo, H., Kikegawa, Y., Kimura, F.: A simple single-layer urban canopy model for atmospheric models: comparison with multi-layer and slab models. Bound.-Layer Meteorol. 101, 329–358 (2001).  https://doi.org/10.1023/A:1019207923078 CrossRefGoogle Scholar
  87. Kwak, K.-H., Baik, J.-J., Ryu, Y.-H., Lee, S.-H.: Urban air quality simulation in a high-rise building area using a CFD model coupled with mesoscale meteorological and chemistry-transport models. Atmos. Environ. 100, 167–177 (2015).  https://doi.org/10.1016/j.atmosenv.2014.10.059 CrossRefGoogle Scholar
  88. Kwak, K.-H., Woo, S.H., Kim, K.H., Lee, S.-B., Bae, G.-N., Ma, Y.-I., Sunwoo, Y., Baik, J.J.: On-road air quality associated with traffic composition and street-canyon ventilation: Mobile monitoring and CFD modeling. Atmosphere. 9, 92 (2018).  https://doi.org/10.3390/atmos9030092 CrossRefGoogle Scholar
  89. Lahoz, W., Khattatov, B., Ménard, R.: Data Assimilation and Information, pp. 3–12. Springer, Data Assimilation (2010)CrossRefGoogle Scholar
  90. Lamarque, J.-F., Bond, T.C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D., Liousse, C., Mieville, A., Owen, B., Schultz, M.G., Shindell, D., Smith, S.J., Stehfest, E., van Aardenne, J., Cooper, O.R., Kainuma, M., Mahowald, N., McConnell, J.R., Naik, V., Riahi, K., van Vuuren, D.P.: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos. Chem. Phys. 10, 7017–7039 (2010).  https://doi.org/10.5194/acp-10-7017-2010 CrossRefGoogle Scholar
  91. Lateb, M., Meroney, R.N., Yataghene, M., Fellouah, H., Saleh, F., Boufadel, M.C.: On the use of numerical modelling for near-field pollutant dispersion in urban environments − a review. Environ. Pollut. 208, 271–283 (2016).  https://doi.org/10.1016/j.envpol.2015.07.039 CrossRefGoogle Scholar
  92. Lee, H.-D., Yoo, J.-W., Kang, M.-K., Kang, J.-S., Jung, J.-H., Oh, K.-J.: Evaluation of concentrations and source contribution of PM10 and SO2 emitted from industrial complexes in Ulsan, Korea: interfacing of the WRF–CALPUFF modeling tools. Atmos. Pollut. Res. 5, 664–676 (2014)CrossRefGoogle Scholar
  93. Lefebvre, W., Vercauteren, J., Schrooten, L., Janssen, S., Degraeuwe, B., Maenhaut, W., de Vlieger, I., Vankerkom, J., Cosemans, G., Mensink, C., Veldeman, N., Deutsch, F., van Looy, S., Peelaerts, W., Lefebre, F.: Validation of the MIMOSA-AURORA-IFDM model chain for policy support: modeling concentrations of elemental carbon in Flanders. Atmos. Environ. 45, 6705–6713 (2011).  https://doi.org/10.1016/j.atmosenv.2011.08.033 CrossRefGoogle Scholar
  94. Lefebvre, W., Van Poppel, M., Maiheu, B., Janssen, S., Dons, E.: Evaluation of the RIO-IFDM-street canyon model chain. Atmos. Environ. 77, 325–337 (2013).  https://doi.org/10.1016/j.atmosenv.2013.05.026 CrossRefGoogle Scholar
  95. Li, X.-B., Lu, Q.-C., Lu, S.-J., He, H.-D., Peng, Z.-R., Gao, Y., Wang, Z.Y.: The impacts of roadside vegetation barriers on the dispersion of gaseous traffic pollution in urban street canyons. Urban For. Urban Green. 17, 80–91 (2016).  https://doi.org/10.1016/j.ufug.2016.03.006 CrossRefGoogle Scholar
  96. Liao, J., Wang, T., Jiang, Z., Zhuang, B., Xie, M., Yin, C., Wang, X., Zhu, J., Fu, Y., Zhang, Y.: WRF/Chem modeling of the impacts of urban expansion on regional climate and air pollutants in Yangtze River Delta, China. Atmos. Environ. 106, 204–214 (2015).  https://doi.org/10.1016/j.atmosenv.2015.01.059 CrossRefGoogle Scholar
  97. Liu, Y.S., Miao, S.G., Zhang, C.L., Cui, G.X., Zhang, Z.S.: Study on micro-atmospheric environment by coupling large eddy simulation with mesoscale model. J. Wind Eng. Ind. Aerodyn. 107–108, 106–117 (2012).  https://doi.org/10.1016/j.jweia.2012.03.033 CrossRefGoogle Scholar
  98. Liu, G., Liu, J., Tarasick, D.W., Fioletov, V.E., Jin, J.J., Moeini, O., Liu, X., Sioris, C.E., Osman, M.: A global tropospheric ozone climatology from trajectory-mapped ozone soundings. Atmos. Chem. Phys. 13, 10659–10675 (2013).  https://doi.org/10.5194/acp-13-10659-2013 CrossRefGoogle Scholar
  99. Maggiotto, G., Buccolieri, R., Santo, M.A., Leo, L.S., Di Sabatino, S.: Validation of temperature-perturbation and CFD-based modelling for the prediction of the thermal urban environment: the Lecce (IT) case study. Environ. Model Softw. 60, 69–83 (2014).  https://doi.org/10.1016/j.envsoft.2014.06.001 CrossRefGoogle Scholar
  100. Malys, L., Musy, M., Inard, C.: Microclimate and building energy consumption: study of different coupling methods. Advances in Building Energy Research. 9, 151–174 (2015).  https://doi.org/10.1080/17512549.2015.1043643 CrossRefGoogle Scholar
  101. Martilli, A.: An idealized study of city structure, urban climate, energy consumption, and air quality. Urban Climate. 10, 430–446 (2014).  https://doi.org/10.1016/j.uclim.2014.03.003 CrossRefGoogle Scholar
  102. Masson, V.: Urban surface modeling and the meso-scale impact of cities. Theor. Appl. Climatol. 84, 35–45 (2006).  https://doi.org/10.1007/s00704-005-0142-3 CrossRefGoogle Scholar
  103. Matthias, V., Arndt, J.A., Aulinger, A., Bieser, J., van der, G.H.D., Kranenburg, R., et al.: Modeling emissions for three-dimensional atmospheric chemistry transport models. J. Air Waste Manage. Assoc. 68, 763–800 (2018).  https://doi.org/10.1080/10962247.2018.1424057 CrossRefGoogle Scholar
  104. Mead, M.I., Popoola, O.A.M., Stewart, G.B., Landshoff, P., Calleja, M., Hayes, M., Baldovi, J.J., McLeod, M.W., Hodgson, T.F., Dicks, J., Lewis, A., Cohen, J., Baron, R., Saffell, J.R., Jones, R.L.: The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks. Atmos. Environ. 70, 186–203 (2013).  https://doi.org/10.1016/j.atmosenv.2012.11.060 CrossRefGoogle Scholar
  105. Miao, Y., Liu, S., Chen, B., Zhang, B., Wang, S., Li, S.: Simulating urban flow and dispersion in Beijing by coupling a CFD model with the WRF model. Adv. Atmos. Sci. 30, 1663–1678 (2013).  https://doi.org/10.1007/s00376-013-2234-9 CrossRefGoogle Scholar
  106. Middel, A., Häb, K., Brazel, A.J., Martin, C.A., Guhathakurta, S.: Impact of urban form and design on mid-afternoon microclimate in Phoenix local climate zones. Landsc. Urban Plan. 122, 16–28 (2014).  https://doi.org/10.1016/j.landurbplan.2013.11.004 CrossRefGoogle Scholar
  107. Mills, G.: Urban climatology: history, status and prospects. Urban Climate. 10, 479–489 (2014).  https://doi.org/10.1016/j.uclim.2014.06.004 CrossRefGoogle Scholar
  108. Mirzaei, P.A.: Recent challenges in modeling of urban heat island. Sustain. Cities Soc. 19, 200–206 (2015).  https://doi.org/10.1016/j.scs.2015.04.001 CrossRefGoogle Scholar
  109. Mirzaei, P.A., Haghighat, F.: Approaches to study urban Heat Island – abilities and limitations. Build. Environ. 45, 2192–2201 (2010).  https://doi.org/10.1016/j.buildenv.2010.04.001 CrossRefGoogle Scholar
  110. Montazeri, H., Blocken, B.: CFD simulation of wind-induced pressure coefficients on buildings with and without balconies: validation and sensitivity analysis. Build. Environ. 60, 137–149 (2013).  https://doi.org/10.1016/j.buildenv.2012.11.012 CrossRefGoogle Scholar
  111. Musy, M., Malys, L., Morille, B., Inard, C.: The use of SOLENE-microclimat model to assess adaptation strategies at the district scale. Urban Climate. 14, 213–223 (2015).  https://doi.org/10.1016/j.uclim.2015.07.004 CrossRefGoogle Scholar
  112. Nopmongcol, U., Liu, Z., Stoeckenius, T., Yarwood, G.: Modeling inter-continental transport of ozone in North America with CAMx for the air quality model evaluation international Initiative (AQMEII) phase 3. Atmos. Chem. Phys. Discuss. 1–25 (2017).  https://doi.org/10.5194/acp-2017-194
  113. OECD: The Economic Consequences of Outdoor Air Pollution. OECD Publishing (2016).  https://doi.org/10.1787/9789264257474-en
  114. Okaze, T., Ono, A., Mochida, A., Kannuki, Y., Watanabe, S.: Evaluation of turbulent length scale within urban canopy layer based on LES data. J. Wind Eng. Ind. Aerodyn. 144, 79–83 (2015).  https://doi.org/10.1016/j.jweia.2014.11.016 CrossRefGoogle Scholar
  115. Ortiz, S.T., Friedrich, R.: A modelling approach for estimating background pollutant concentrations in urban areas. Atmos. Pollut. Res. 4, 147–156 (2013)CrossRefGoogle Scholar
  116. Ortolani, C., Vitale, M.: The importance of local scale for assessing, monitoring and predicting of air quality in urban areas. Sustain. Cities Soc. 26, 150–160 (2016).  https://doi.org/10.1016/j.scs.2016.06.001 CrossRefGoogle Scholar
  117. Over, M., Schilling, A., Neubauer, S., Zipf, A.: Generating web-based 3D city models from OpenStreetMap: the current situation in Germany. Comput. Environ. Urban. Syst. 34, 496–507 (2010).  https://doi.org/10.1016/j.compenvurbsys.2010.05.001 CrossRefGoogle Scholar
  118. Paas, B., Schneider, C.: A comparison of model performance between ENVI-met and Austal2000 for particulate matter. Atmos. Environ. 145, 392–404 (2016).  https://doi.org/10.1016/j.atmosenv.2016.09.031 CrossRefGoogle Scholar
  119. Padro-Martinez, L.T., Patton, A.P., Trull, J.B., Zamore, W., Brugge, D., Durant, J.L.: Mobile monitoring of particle number concentration and other traffic-related air pollutants in a near-highway neighborhood over the course of a year. Atmos. Environ. 61, 253–264 (2012).  https://doi.org/10.1016/j.atmosenv.2012.06.088 CrossRefGoogle Scholar
  120. Pasquill, F.: The estimation of the dispersion of windborne material. Met. Mag. 90, 33 (1961)Google Scholar
  121. Pasquill, F.: Atmospheric Diffusion, 2nd edn. Ellis Horwood Ltd, Chichester (1974)Google Scholar
  122. Pasquill, F., Smith, B.: Study of the Disperion of windborne material Etc. In: Ellis Horwood (1983)Google Scholar
  123. Pepe, N., Pirovano, G., Lonati, G., Balzarini, A., Toppetti, A., Riva, G.M., Bedogni, M.: Development and application of a high resolution hybrid modelling system for the evaluation of urban air quality. Atmos. Environ. 141, 297–311 (2016).  https://doi.org/10.1016/j.atmosenv.2016.06.071 CrossRefGoogle Scholar
  124. Pernigotti, D., Belis, C.A., Spanò, L.: SPECIEUROPE: the European data base for PM source profiles. Atmos. Pollut. Res. 7, 307–314 (2016).  https://doi.org/10.1016/j.apr.2015.10.007 CrossRefGoogle Scholar
  125. Piringer, M., Joffre, S., Baklanov, A., Christen, A., Deserti, M., Ridder, K.D., et al.: The surface energy balance and the mixing height in urban areas—activities and recommendations of COST-action 715. Bound.-Layer Meteorol. 124, 3–24 (2007).  https://doi.org/10.1007/s10546-007-9170-0 CrossRefGoogle Scholar
  126. Pournazeri, S., Princevac, M., Venkatram, A.: Scaling of building affected plume rise and dispersion in water channels and wind tunnels—revisit of an old problem. J. Wind Eng. Ind. Aerodyn. 103, 16–30 (2012).  https://doi.org/10.1016/j.jweia.2012.01.006 CrossRefGoogle Scholar
  127. Price, C., Penner, J., Prather, M.: NO2 from lightning: 1. Global distribution based on lightning physics. J. Geophys. Res. Atmos. 102, 5929–5941 (1997).  https://doi.org/10.1029/96JD03504 CrossRefGoogle Scholar
  128. Pugh, T.A.M., MacKenzie, A.R., Whyatt, J.D., Hewitt, C.N.: Effectiveness of green infrastructure for improvement of air quality in urban street canyons. Environ Sci Technol. 46, 7692–7699 (2012).  https://doi.org/10.1021/es300826w CrossRefGoogle Scholar
  129. Pul, W.A.J.V., Holtslag, A.: a. M, swart DPJ. A comparison of ABL heights inferred routinely from lidar and radiosondes at noontime. Bound.-Layer Meteorol. 68, 173–191 (1994).  https://doi.org/10.1007/BF00712670 CrossRefGoogle Scholar
  130. Rakowska, A., Wong, K.C., Townsend, T., Chan, K.L., Westerdahl, D., Ng, S., Močnik, G., Drinovec, L., Ning, Z.: Impact of traffic volume and composition on the air quality and pedestrian exposure in urban street canyon. Atmospheric Environment. 98, 260–270 (2014).  https://doi.org/10.1016/j.atmosenv.2014.08.073 CrossRefGoogle Scholar
  131. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2017)Google Scholar
  132. Robitu, M., Musy, M., Inard, C., Groleau, D.: Modeling the influence of vegetation and water pond on urban microclimate. Solar Energy, Urban Ventilation. 80, 435–447 (2006).  https://doi.org/10.1016/j.solener.2005.06.015 CrossRefGoogle Scholar
  133. Rottensteiner, F., Sohn, G., Gerke, M., Wegner, J.D., Breitkopf, U., Jung, J.: Results of the ISPRS benchmark on urban object detection and 3D building reconstruction. ISPRS J. Photogramm. Remote Sens. 93, 256–271 (2014)CrossRefGoogle Scholar
  134. Santamouris, M., Xirafi, F., Gaitani, N., Spanou, A., Saliari, M., Vassilakopoulou, K.: Improving the microclimate in a dense urban area using experimental and theoretical techniques - the case of Marousi, Athens. Int. J. Vent. 11, 1–16 (2012).  https://doi.org/10.1080/14733315.2012.11683966 CrossRefGoogle Scholar
  135. Santiago, J.L., Martilli, A.: A dynamic urban canopy parameterization for mesoscale models based on computational fluid dynamics Reynolds-averaged Navier–stokes microscale simulations. Bound.-Layer Meteorol. 137, 417–439 (2010).  https://doi.org/10.1007/s10546-010-9538-4 CrossRefGoogle Scholar
  136. Santiago, J.L., Sanchez, B., Martilli, A.: Microscale modeling of effects of realistic surface heat fluxes on pollutant distribution within a simplified urban configuration. In: 9th International Conference on Urban Climate Jointly with 12th Symposium on the Urban Environment Toulouse (2015)Google Scholar
  137. Schultz, M.G., Heil, A., Hoelzemann, J.J., Spessa, A., Thonicke, K., Goldammer, J.G., et al.: Global wildland FIRE emissions from 1960 to 2000: GLOBAL FIRE EMISSIONS 1960-2000. Glob. Biogeochem. Cycles. 22, n/a–n/a (2008).  https://doi.org/10.1029/2007GB003031 CrossRefGoogle Scholar
  138. Searcy, C., Dean, K., Stringer, W.: PUFF: a high-resolution volcanic ash tracking model. J. Volcanol. Geotherm. Res. 80, 1–16 (1998)CrossRefGoogle Scholar
  139. Shahbazi, H., Ganjiazad, R., Hosseini, V., Hamedi, M.: Investigating the influence of traffic emission reduction plans on Tehran air quality using WRF/CAMx modeling tools. Transp. Res. Part D: Transp. Environ. 57, 484–495 (2017)CrossRefGoogle Scholar
  140. Sharma, S., Chatani, S., Mahtta, R., Goel, A., Kumar, A.: Sensitivity analysis of ground level ozone in India using WRF-CMAQ models. Atmos. Environ. 131, 29–40 (2016).  https://doi.org/10.1016/j.atmosenv.2016.01.036 CrossRefGoogle Scholar
  141. Shih, T.-H., Liou, W.W., Shabbir, A., Yang, Z., Zhu, J.: A new k-ϵ eddy viscosity model for high Reynolds number turbulent flows. Comput. Fluids. 24, 227–238 (1995).  https://doi.org/10.1016/0045-7930(94)00032-T CrossRefGoogle Scholar
  142. Sicard, P., Agathokleous, E., Araminiene, V., Carrari, E., Hoshika, Y., De Marco, A., et al.: Should we see urban trees as effective solutions to reduce increasing ozone levels in cities? Environ. Pollut. 243, 163–176 (2018).  https://doi.org/10.1016/j.envpol.2018.08.049 CrossRefGoogle Scholar
  143. Simon, H., Beck, L., Bhave, P.V., Divita, F., Hsu, Y., Luecken, D., Mobley, J.D., Pouliot, G.A., Reff, A., Sarwar, G., Strum, M.: The development and uses of EPA’s SPECIATE database. Atmos. Pollut. Res. 1, 196–206 (2010).  https://doi.org/10.5094/APR.2010.026 CrossRefGoogle Scholar
  144. Simon, H., Baker, K.R., Phillips, S.: Compilation and interpretation of photochemical model performance statistics published between 2006 and 2012. Atmos. Environ. 61, 124–139 (2012).  https://doi.org/10.1016/j.atmosenv.2012.07.012 CrossRefGoogle Scholar
  145. Sindelarova, K., Granier, C., Bouarar, I., Guenther, A., Tilmes, S., Stavrakou, T., Müller, J.F., Kuhn, U., Stefani, P., Knorr, W.: Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years. Atmos. Chem. Phys. 14, 9317–9341 (2014).  https://doi.org/10.5194/acp-14-9317-2014 CrossRefGoogle Scholar
  146. Skamarock, W., Klemp, J., Dudhia, J., Gill, D., Barker, D., Wang, W., et al.: A description of the advanced research WRF version 3. UCAR/NCAR. (2008).  https://doi.org/10.5065/D68S4MVH
  147. Steensen, T., Stuefer, M., Webley, P., Grell, G., Freitas, S.: Qualitative comparison of mount redoubt 2009 volcanic clouds using the PUFF and WRF-Chem dispersion models and satellite remote sensing data. J. Volcanol. Geotherm. Res. 259, 235–247 (2013).  https://doi.org/10.1016/j.jvolgeores.2012.02.018 CrossRefGoogle Scholar
  148. Stein, A.F., Isakov, V., Godowitch, J., Draxler, R.R.: A hybrid modeling approach to resolve pollutant concentrations in an urban area. Atmos. Environ. 41, 9410–9426 (2007).  https://doi.org/10.1016/j.atmosenv.2007.09.004 CrossRefGoogle Scholar
  149. Streets, D.G., Canty, T., Carmichael, G.R., de Foy, B., Dickerson, R.R., Duncan, B.N., Edwards, D.P., Haynes, J.A., Henze, D.K., Houyoux, M.R., Jacob, D.J., Krotkov, N.A., Lamsal, L.N., Liu, Y., Lu, Z., Martin, R.V., Pfister, G.G., Pinder, R.W., Salawitch, R.J., Wecht, K.J.: Emissions estimation from satellite retrievals: a review of current capability. Atmos. Environ. 77, 1011–1042 (2013)CrossRefGoogle Scholar
  150. Sutton, O.G.: Micrometeorology. McGraw-Hill, NewYork (1953)Google Scholar
  151. Synnefa, A., Saliari, M., Santamouris, M.: Experimental and numerical assessment of the impact of increased roof reflectance on a school building in Athens. Energy and Buildings. 55, 7–15 (2012)CrossRefGoogle Scholar
  152. Taylor, G.: Turbulence. Q.J.R. Meteorol. Soc. 53 (1927)Google Scholar
  153. Temel, O., Bricteux, L., van Beeck, J.: Coupled WRF-OpenFOAM study of wind flow over complex terrain. J. Wind Eng. Ind. Aerodyn. 174, 152–169 (2018).  https://doi.org/10.1016/j.jweia.2018.01.002 CrossRefGoogle Scholar
  154. Tewari, M., Chen, F., Kusaka, H., Miao, S.: Coupled WRF/unified Noah/urban-canopy modeling system. Ncar WRF Documentation, NCAR, Boulder. 122, (2007)Google Scholar
  155. Tewari, M., Kusaka, H., Chen, F., Coirier, W.J., Kim, S., Wyszogrodzki, A.A., Warner, T.T.: Impact of coupling a microscale computational fluid dynamics model with a mesoscale model on urban scale contaminant transport and dispersion. Atmos. Res. 96, 656–664 (2010).  https://doi.org/10.1016/j.atmosres.2010.01.006 CrossRefGoogle Scholar
  156. Thunis, P., Miranda, A., Baldasano, J.M., Blond, N., Douros, J., Graff, A., Janssen, S., Juda-Rezler, K., Karvosenoja, N., Maffeis, G., Martilli, A., Rasoloharimahefa, M., Real, E., Viaene, P., Volta, M., White, L.: Overview of current regional and local scale air quality modelling practices: assessment and planning tools in the EU. Environ. Sci. Pol. 65, 13–21 (2016).  https://doi.org/10.1016/j.envsci.2016.03.013 CrossRefGoogle Scholar
  157. Toja-Silva, F., Chen, J., Hachinger, S., Hase, F.: CFD simulation of CO 2 dispersion from urban thermal power plant: analysis of turbulent Schmidt number and comparison with Gaussian plume model and measurements. J. Wind Eng. Ind. Aerodyn. 169, 177–193 (2017)CrossRefGoogle Scholar
  158. Tominaga, Y., Mochida, A., Yoshie, R., Kataoka, H., Nozu, T., Yoshikawa, M., Shirasawa, T.: AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. J. Wind Eng. Ind. Aerodyn. 96, 1749–1761 (2008).  https://doi.org/10.1016/j.jweia.2008.02.058 CrossRefGoogle Scholar
  159. Toparlar, Y., Blocken, B., Maiheu, B., van Heijst, G.J.F.: A review on the CFD analysis of urban microclimate. Renew. Sust. Energ. Rev. 80, 1613–1640 (2017).  https://doi.org/10.1016/j.rser.2017.05.248 CrossRefGoogle Scholar
  160. Trombetti M., Pisoni E., Lavalle C.: Downscaling methodology to produce a high resolution gridded emission inventory to support local/city level air quality policies, EUR 28428 EN (2017).  https://doi.org/10.2760/51058
  161. Tsakovski, S.L., Simeonova, P.A., Simeonov, V.D.: Statistical modeling of air pollution. J. Environ. Sci. Health A. 47, 31–43 (2012).  https://doi.org/10.1080/10934529.2012.629576 CrossRefGoogle Scholar
  162. Turner DB. Workbook on atmospheric dispersion estimates. Office of air Programs pub. No. AP-26, Enviornmental protection agency, USA; 1970Google Scholar
  163. UN. World Urbanization Prospects: The 2018 Revision. 2018Google Scholar
  164. UNDESA. UN Department of Economic and Social Affairs. 2018Google Scholar
  165. Vennam, L.P., Vizuete, W., Talgo, K., Omary, M., Binkowski, F.S., Xing, J., Mathur, R., Arunachalam, S.: Modeled full-flight aircraft emissions impacts on air quality and their sensitivity to grid resolution: aircraft emissions impacts on surface AQ. J. Geophys. Res. Atmos. 122, 13,472–13,494 (2017).  https://doi.org/10.1002/2017JD026598 CrossRefGoogle Scholar
  166. Wang, M., Zhu, T., Zheng, J., Zhang, R.Y., Zhang, S.Q., Xie, X.X., Han, Y.Q., Li, Y.: Use of a mobile laboratory to evaluate changes in on-road air pollutants during the Beijing 2008 summer Olympics. Atmos. Chem. Phys. 9, 8247–8263 (2009).  https://doi.org/10.5194/acp-9-8247-2009 CrossRefGoogle Scholar
  167. Wang, Y., Bakker, F., de Groot, R., Wortche, H., Leemans, R.: Effects of urban trees on local outdoor microclimate: synthesizing field measurements by numerical modelling. Urban Ecosystems. 18, 1305–1331 (2015).  https://doi.org/10.1007/s11252-015-0447-7 CrossRefGoogle Scholar
  168. Wen, D., Lin, J.C., Millet, D.B., Stein, A.F., Draxler, R.R.: A backward-time stochastic Lagrangian air quality model. Atmospheric Environment. 54, 373–386 (2012).  https://doi.org/10.1016/j.atmosenv.2012.02.042 CrossRefGoogle Scholar
  169. WHO. WHO Global Ambient Air Quality Database (update 2018). 2018Google Scholar
  170. Wilkerson, J.T., Jacobson, M.Z., Malwitz, A., Balasubramanian, S., Wayson, R., Fleming, G., Naiman, A.D., Lele, S.K.: Analysis of emission data from global commercial aviation: 2004 and 2006. Atmos. Chem. Phys. 10, 6391–6408 (2010)CrossRefGoogle Scholar
  171. Woody, M.C., West, J.J., Jathar, S.H., Robinson, A.L., Arunachalam, S.: Estimates of non-traditional secondary organic aerosols from aircraft SVOC and IVOC emissions using CMAQ. Atmos. Chem. Phys. 15, 6929–6942 (2015).  https://doi.org/10.5194/acp-15-6929-2015 CrossRefGoogle Scholar
  172. Xia, Q., Niu, J., Liu, X.: Dispersion of air pollutants around buildings: a review of past studies and their methodologies. Indoor and Built Environ. 23, 201–224 (2014).  https://doi.org/10.1177/1420326X12464585 CrossRefGoogle Scholar
  173. Xiao, X.D., Dong, L., Yan, H., Yang, N., Xiong, Y.: The influence of the spatial characteristics of urban green space on the urban heat island effect in Suzhou Industrial Park. Sustain. Cities Soc. 40, 428–439 (2018).  https://doi.org/10.1016/j.scs.2018.04.002 CrossRefGoogle Scholar
  174. Xie, B., Fung, J.C., Chan, A., Lau, A.: Evaluation of nonlocal and local planetary boundary layer schemes in the WRF model. J. Geophys. Res. Atmos. 117, (2012)CrossRefGoogle Scholar
  175. Yahya, K., Wang, K., Campbell, P., Chen, Y., Glotfelty, T., He, J., Pirhalla, M., Zhang, Y.: Decadal application of WRF/Chem for regional air quality and climate modeling over the U.S. under the representative concentration pathways scenarios. Part 1: model evaluation and impact of downscaling. Atmos. Environ. 152, 562–583 (2017).  https://doi.org/10.1016/j.atmosenv.2016.12.029 CrossRefGoogle Scholar
  176. Yakhot, V., Orszag, S.A.: Renormalization group analysis of turbulence. I. Basic theory. J. Sci. Comput. 1, 3–51 (1986).  https://doi.org/10.1007/BF01061452 CrossRefGoogle Scholar
  177. Yamada, T., Mellor, G.: A simulation of the Wangara atmospheric boundary layer data. J. Atmos. Sci. 32, 2309–2329 (1975).  https://doi.org/10.1175/1520-0469(1975)032<2309:ASOTWA>2.0.CO;2 CrossRefGoogle Scholar
  178. Yan, W.Y., Shaker, A., El-Ashmawy, N.: Urban land cover classification using airborne LiDAR data: a review. Remote Sens. Environ. 158, 295–310 (2015).  https://doi.org/10.1016/j.rse.2014.11.001 CrossRefGoogle Scholar
  179. Yang, Z.: Prediction of air pollutant from poultry houses by a modified Gaussian plume model. In: PhD Thesis (2017)Google Scholar
  180. Yang, X., Zhao, L., Bruse, M., Meng, Q.: An integrated simulation method for building energy performance assessment in urban environments. Energy and Buildings. 54, 243–251 (2012).  https://doi.org/10.1016/j.enbuild.2012.07.042 CrossRefGoogle Scholar
  181. Yao, Z., Nagel, C., Kunde, F., Hudra, G., Willkomm, P., Donaubauer, A., Adolphi, T., Kolbe, T.H.: 3DCityDB - a 3D geodatabase solution for the management, analysis, and visualization of semantic 3D city models based on CityGML. Open geospatial data, softw. stand. 3, 5 (2018).  https://doi.org/10.1186/s40965-018-0046-7
  182. Yotova, G.I., Tsitouridou, R., Tsakovski, S.L., Simeonov, V.D.: Urban air quality assessment using monitoring data of fractionized aerosol samples, chemometrics and meteorological conditions. J. Environ. Sci. Health A. 51, 544–552 (2016)CrossRefGoogle Scholar
  183. Yu, S., Mathur, R., Pleim, J., Pouliot, G., Wong, D., Eder, B., Schere, K., Gilliam, R., Rao, S.T.: Comparative evaluation of the impact of WRF/NMM and WRF/ARW meteorology on CMAQ simulations for PM2.5 and its related precursors during the 2006 TexAQS GoMACCS study. Atmos. Chem. Phys. 12, 4091–4106 (2012).  https://doi.org/10.5194/acp-12-4091-2012 CrossRefGoogle Scholar
  184. Zannetti, P.: Gaussian Models. In: Air Pollution Modeling, pp. 141–183. Springer US, Boston, MA (1990).  https://doi.org/10.1007/978-1-4757-4465-1_7 CrossRefGoogle Scholar
  185. Zhang, Y., Chen, Y., Sarwar, G., Schere, K.: Impact of gas-phase mechanisms on weather research forecasting model with chemistry (WRF/Chem) predictions: mechanism implementation and comparative evaluation. J. Geophys. Res. Atmos. 117, (2012).  https://doi.org/10.1029/2011JD015775 CrossRefGoogle Scholar
  186. Zhang, Y., Zhang, X., Wang, L., Zhang, Q., Duan, F., He, K.: Application of WRF/Chem over East Asia: part I. Model evaluation and intercomparison with MM5/CMAQ. Atmos. Environ. 124, 285–300 (2016).  https://doi.org/10.1016/j.atmosenv.2015.07.022 CrossRefGoogle Scholar
  187. Zheng, Y., Miao, Y., Liu, S., Chen, B., Zheng, H., Wang, S.: Simulating flow and dispersion by using WRF-CFD coupled model in a built-up area of Shenyang, China. Adv. Meteorol. 2015, 1–15 (2015).  https://doi.org/10.1155/2015/528618 CrossRefGoogle Scholar
  188. Zhong, M., Saikawa, E., Liu, Y., Naik, V., Horowitz, L.W., Takigawa, M., Zhao, Y., Lin, N.H., Stone, E.A.: Air quality modeling with WRF-Chem v3.5 in East Asia: sensitivity to emissions and evaluation of simulated air quality. Geosci. Model Dev. 9, 1201–1218 (2016).  https://doi.org/10.5194/gmd-9-1201-2016 CrossRefGoogle Scholar
  189. Zwack, L.M., Paciorek, C.J., Spengler, J.D., Levy, J.I.: Characterizing local traffic contributions to particulate air pollution in street canyons using mobile monitoring techniques. Atmospheric Environment. 45, 2507–2514 (2011).  https://doi.org/10.1016/j.atmosenv.2011.02.035 CrossRefGoogle Scholar

Copyright information

© Korean Meteorological Society and Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Cleaner Technology and Modeling DivisionCSIR - National Environmental Engineering Research InstituteNagpurIndia
  2. 2.Water and Environment Division, Department of Civil EngineeringNational Institute of TechnologyWarangalIndia

Personalised recommendations