Advertisement

Differences in the Tropical Convective Activities at the Opposite Phases of the Quasi-Biennial Oscillation

  • Jin-Haeng Lee
  • Min-Jee Kang
  • Hye-Yeong Chun
Article
  • 33 Downloads

Abstract

Differences in convective activities in the tropical region (30°S–30°N, 180°E–180°W) during different phases of the quasi-biennial oscillation (QBO) are investigated over 32 years (1979–2010) using five metrics representing tropical convection: (i) precipitation and (ii) outgoing longwave radiation from observations and (iii) convective available potential energy (CAPE), (iv) deep convective heating rate, and (v) convective cloud top pressure from reanalysis data. The easterly (QBOE) and westerly (QBOW) phases of the QBO are defined using the zonal wind anomaly from the monthly climatology at 50 hPa. During the QBOE (QBOW), the convective activities are intensified (weakened) over the Maritime Continent and weakened (intensified) over the equatorial eastern and central Pacific. Therefore, the zonal mean values of the five metrics averaged over chronically convective regions show stronger convective activities during the QBOE than during the QBOW, while the opposite is true for the whole tropical region. Composite analyses are also performed during the neutral, El Niño, and La Niña periods. In the neutral period, the convective activities during QBOE are stronger than during QBOW except in the equatorial region (10°S–10°N). The convective activities over the Maritime Continent (central and eastern Pacific) are enhanced when La Niña and the QBOE (El Niño and the QBOW) occur simultaneously. All metrics show similar pattern to one another, implying that the metrics from reanalysis data represent the variations in the convective activities with respect to the QBO reasonably well. Among the five metrics, the CAPE is most sensitive to the QBO phase, likely because the virtual temperature in the upper troposphere is modulated by anomalous meridional circulations induced by different QBO phases.

Keywords

Quasi-biennial oscillation Tropical deep convection Convective activity ENSO 

Notes

Acknowledgments

This work was funded by the Korea Meteorological Administration Research and Development Program under Grant KMIPA 2015-6160.

Supplementary material

13143_2018_96_MOESM1_ESM.pdf (1.1 mb)
ESM 1 (PDF 1129 kb)

References

  1. Adams, D.K., Souza, E.P.: CAPE and convective events in the southwest during the north American monsoon. Mon. Weather Rev. 137, 83–98 (2009).  https://doi.org/10.1175/2008MWR2502.1 CrossRefGoogle Scholar
  2. Adler, R.F., et al.: The Version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeorol. 4, 1147–1167 (2003).  https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2 CrossRefGoogle Scholar
  3. Arakawa, A., Schubert, W.H.: Interaction of a cumulus cloud ensemble with the large-scale environment, part I. J. Atmos. Sci. 31, 674–701 (1974).  https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2 CrossRefGoogle Scholar
  4. Baldwin, M.P., et al.: The Quasi-Biennial Oscillation. Rev. Geophys. 39, 179–229 (2001).  https://doi.org/10.1029/1999RG000073 CrossRefGoogle Scholar
  5. Camargo, S.J., Sobel, A.H.: Revisiting the influence of the quasi-biennial oscillation on tropical cyclone activity. J. Clim. 23, 5810–5825 (2010).  https://doi.org/10.1175/2010JCLI3575.1 CrossRefGoogle Scholar
  6. Claud, C., Terray, P.: Revisiting the possible links between the quasi-biennial oscillation and the Indian summer monsoon using NCEP R-2 and CMAP fields. J. Clim. 20, 773–787 (2007).  https://doi.org/10.1175/JCLI4034.1 CrossRefGoogle Scholar
  7. Collimore, C.C., Martin, D.W., Hitchman, M.H., Huesmann, A., Waliser, D.E.: On the relationship between the QBO and tropical deep convection. J. Clim. 16, 2552–2568 (2003).  https://doi.org/10.1175/1520-0442(2003)016<2552:OTRBTQ>2.0.CO;2 CrossRefGoogle Scholar
  8. Du, Y., Zhang, Y., Feng, M., Wang, T., Zhang, N., Wijffels, S.: Decadal trends of the upper ocean salinity in the tropical indo-Pacific since mid-1990s. Sci. Rep. 5, 16050 (2015).  https://doi.org/10.1038/srep16050 CrossRefGoogle Scholar
  9. Emanuel, K. A.: Atmospheric Convection. Oxford University Press, 580 pp. (1994).Google Scholar
  10. Garfinkel, C.I., Hartmann, D.L.: The influence of the quasi-biennial oscillation on the troposphere in wintertime in a hierarchy of models. Part II: perpetual winter WACCM runs. J. Atmos. Sci. 68, 2026–2041 (2011).  https://doi.org/10.1175/2011JAS3702.1 CrossRefGoogle Scholar
  11. Geller, M.A., Zhou, T., Yuan, W.: The QBO, gravity waves forced by tropical convection, and ENSO. J. Geophys. Res. Atmos. 121, 8886–8895 (2016).  https://doi.org/10.1002/2015JD024125 CrossRefGoogle Scholar
  12. Giorgetta, M.A., Bengtsson, L.: Potential role of the quasi-biennial oscillation in the stratosphere-troposphere exchange as found in water vapor in general circulation model experiments. J. Geophys. Res. 104, 6003–6020 (1999).  https://doi.org/10.1029/1998JD200112 CrossRefGoogle Scholar
  13. Giorgetta, M.A., Bengtsson, L., Arpe, K.: An investigation of QBO signals in the east Asian and Indian monsoon in GCM experiments. Clim. Dyn. 15, 435–450 (1999).  https://doi.org/10.1007/s003820050292 CrossRefGoogle Scholar
  14. Gray, W.M.: Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb quasi-biennial oscillation influences. Mon. Weather Rev. 112, 1649–1668 (1984).  https://doi.org/10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2 CrossRefGoogle Scholar
  15. Gray, W.M., Scheaffer, J.D., Knaff, J.A.: Influence of the stratospheric QBO on ENSO variability. J. Meteorol. Soc. Jpn. 70, 975–995 (1992).  https://doi.org/10.2151/jmsj1965.70.5_975 CrossRefGoogle Scholar
  16. Han, W., et al.: Intensification of decadal and multi-decadal sea level variability in the western tropical Pacific during recent decades. Clim. Dyn. 43, 1357–1379 (2014).  https://doi.org/10.1007/s00382-013-1951-1 CrossRefGoogle Scholar
  17. Hansen, F., Matthes, K., Wahl, S.: Tropospheric QBO–ENSO interactions and differences between the Atlantic and Pacific. J. Clim. 29, 1353–1368 (2016).  https://doi.org/10.1175/JCLI-D-15-0164.1 CrossRefGoogle Scholar
  18. Ho, C.-H., Kim, H.-S., Jeong, J.-H., Son, S.-W.: Influence of stratospheric quasi-biennial oscillation on tropical cyclone tracks in western North Pacific. Geophys. Res. Lett. 36, L06702 (2009).  https://doi.org/10.1029/2009GL037163 CrossRefGoogle Scholar
  19. Holton, J.R., Lindzen, R.S.: An updated theory for the quasi-biennial cycle of the tropical stratosphere. J. Atmos. Sci. 29, 1076–1080 (1972).  https://doi.org/10.1175/1520-0469(1972)029<1076:AUTFTQ>2.0.CO;2 CrossRefGoogle Scholar
  20. Huang, B., Hu, Z.-Z., Kinter III, J.L., Wu, Z., Kumar, A.: Connection of stratospheric QBO with global atmospheric general circulation and tropical SST. Part I: Methodology and composite life cycle. Clim. Dyn. 38, 1–23 (2012).  https://doi.org/10.1007/s00382-011-1250-7 CrossRefGoogle Scholar
  21. Huesmann, A.S., Hitchman, M.H.: The stratospheric quasi-biennial oscillation in the NCEP reanalyses: climatological structures. J. Geophys. Res. 106, 11859–11874 (2001).  https://doi.org/10.1029/2001JD900031 CrossRefGoogle Scholar
  22. Huffman, G.J., Adler, R.F., Bolvin, D.T., Gu, G., Nelkin, E.J., Bowman, K.P., Hong, Y., Stocker, E.F., Wolff, D.B.: The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 8, 38–55 (2007).  https://doi.org/10.1175/JHM560.1 CrossRefGoogle Scholar
  23. Kane, R.P.: Comparison of stratospheric zonal winds and El Nino southern oscillation in recent decades. Int. J. Climatol. 24, 525–532 (2004).  https://doi.org/10.1002/joc.1004 CrossRefGoogle Scholar
  24. Kim, Y.-H., Chun, H.-Y.: Contributions of equatorial wave modes and parameterized gravity waves to the tropical QBO in HadGEM2. J. Geophys. Res. Atmos. 120, 1065–1090 (2015).  https://doi.org/10.1002/2014JD022174 CrossRefGoogle Scholar
  25. Lee, H.-T.: Climate Algorithm Theoretical Basis Document (C-ATBD): Outgoing Longwave Radiation (OLR) - Daily. NOAA’s Climate Data Record (CDR) Program, CDRP-ATBD-0526, 46 pp. (2014). http://www1.ncdc.noaa.gov/pub/data/sds/cdr/CDRs/Outgoing%20Longwave%20Radiation%20-%20Daily/AlgorithmDescription.pdf
  26. Liess, S., Geller, M.A.: On the relationship between QBO and distribution of tropical deep convection. J. Geophys. Res. 117, D03108 (2012).  https://doi.org/10.1029/2011JD016317. CrossRefGoogle Scholar
  27. Naujokat, B.: An update of the observed quasi-biennial oscillation of the stratospheric winds over the tropics. J. Atmos. Sci. 43, 1873–1877 (1986).  https://doi.org/10.1175/1520-0469(1986)043<1873:AUOTOQ>2.0.CO;2 CrossRefGoogle Scholar
  28. Nie, J., Sobel, A.H.: Responses of tropical deep convection to the QBO: cloud-resolving simulations. J. Atmos. Sci. 72, 3625–3638 (2015).  https://doi.org/10.1175/JAS-D-15-0035.1 CrossRefGoogle Scholar
  29. Pan, H.-L., and W.-S. Wu: Implementing a mass flux convective parameterization package for the NMC medium-range forecast model. NMC Office Note 409, 40 pp. (1995). http://www2.mmm.ucar.edu/wrf/users/phys_refs/CU_PHYS/Old_SAS.pdf.
  30. Plumb, R.A., Bell, R.C.: A model of the quasi-biennial oscillation on an equatorial beta-plane. Q. J. R. Meteorol. Soc. 108, 335–352 (1982).  https://doi.org/10.1002/qj.49710845604 CrossRefGoogle Scholar
  31. Reed, R.J., Campbell, W.J., Rasmussen, L.A., Rogers, R.G.: Evidence of a downward propagating annual wind reversal in the equatorial stratosphere. J. Geophys. Res. 66, 813–818 (1961).  https://doi.org/10.1029/JZ066i003p00813 CrossRefGoogle Scholar
  32. Reid, G.C., Gage, K.S.: Interannual variations in the height of the tropical tropopause. J. Geophys. Res. 90, 5629–5635 (1985).  https://doi.org/10.1029/JD090iD03p05629 CrossRefGoogle Scholar
  33. Saha, S., et al.: The NCEP climate forecast system reanalysis. Bull. Am. Meteorol. Soc. 91, 1015–1057 (2010).  https://doi.org/10.1175/2010BAMS3001.1 CrossRefGoogle Scholar
  34. Schirber, S.: Influence of ENSO on the QBO: results from an ensemble of idealized simulations. J. Geophys. Res. Atmos. 120, 1109–1122 (2015).  https://doi.org/10.1002/2014JD022460 CrossRefGoogle Scholar
  35. Seo, J., Choi, W., Youn, D., Park, D.S.R., Kim, J.Y.: Relationship between the stratospheric quasi-biennial oscillation and the spring rainfall in the western North Pacific. Geophys. Res. Lett. 40, 5949–5953 (2013).  https://doi.org/10.1002/2013GL058266 CrossRefGoogle Scholar
  36. Son, S.-W., Lim, Y., Yoo, C., Hendon, H.H., Kim, J.: Stratospheric control of madden–Julian oscillation. J. Clim. 30, 1909–1922 (2017).  https://doi.org/10.1175/JCLI-D-16-0620.1 CrossRefGoogle Scholar
  37. Taguchi, M.: Observed connection of the stratospheric quasi-biennial oscillation with El Niño–southern oscillation in radiosonde data. J. Geophys. Res. 115, D18120 (2010).  https://doi.org/10.1029/2010JD014325. CrossRefGoogle Scholar
  38. Tompkins, A.M.: Organization of tropical convection in low vertical wind shears: the role of water vapor. J. Atmos. Sci. 58, 529–545 (2001).  https://doi.org/10.1175/1520-0469(2001)058<0529:OOTCIL>2.0.CO;2 CrossRefGoogle Scholar
  39. Waliser, D.E., Graham, N.E., Gautier, C.: Comparison of the highly reflective cloud and outgoing longwave radiation datasets for use in estimating tropical deep convection. J. Clim. 6, 331–353 (1993)CrossRefGoogle Scholar
  40. Wang, W., Xie, P., Yoo, S.-H., Xue, Y., Kumar, A., Wu, X.: An assessment of the surface climate in the NCEP climate forecast system reanalysis. Clim. Dyn. 37, 1601–1620 (2011).  https://doi.org/10.1007/s00382-010-0935-7 CrossRefGoogle Scholar
  41. Williams, E., Renno, N.: An analysis of the conditional instability of the tropical atmosphere. Mon. Weather Rev. 121, 21–36 (1993)CrossRefGoogle Scholar
  42. Xue, X., Chen, W., Chen, S., Zhou, D.: Modulation of the connection between boreal winter ENSO and the south Asian high in the following summer by the stratospheric quasi-biennial oscillation. J. Geophys. Res. Atmos. 120, 7393–7411 (2015).  https://doi.org/10.1002/2015JD023260 CrossRefGoogle Scholar
  43. Yoo, C., Son, S.-W.: Modulation of the boreal wintertime madden–Julian oscillation by the stratospheric quasi-biennial oscillation. Geophys. Res. Lett. 43, 1392–1398 (2016).  https://doi.org/10.1002/2016GL067762 CrossRefGoogle Scholar
  44. Yuan, W., Geller, M.A., Love, P.T.: ENSO influence on QBO modulations of the tropical tropopause. Q. J. R. Meteorol. Soc. 140, 1670–1676 (2014).  https://doi.org/10.1002/qj.2247 CrossRefGoogle Scholar
  45. Zhang, C., Zhang, B.: QBO-MJO connection. J. Geophys. Res. Atmos. 123, 2957–2967 (2018).  https://doi.org/10.1002/2017JD028171 CrossRefGoogle Scholar
  46. Zhou, X., Geller, M.A., Zhang, M.: Tropical cold point tropopause characteristics derived from ECMWF reanalyses and soundings. J. Clim. 14, 1823–1838 (2001).  https://doi.org/10.1175/1520-0442(2001)014<1823:TCPTCD>2.0.CO;2 CrossRefGoogle Scholar

Copyright information

© Korean Meteorological Society and Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Atmospheric SciencesYonsei UniversitySeoulSouth Korea

Personalised recommendations