Advertisement

Evaluation of Upper Tropospheric Humidity in WRF Model during Indian Summer Monsoon

  • Attada RajuEmail author
  • Prashant Kumar
  • Anant Parekh
  • K. Ravi Kumar
  • C. Nagaraju
  • J. S. Chowdary
  • D. Nagarjuna Rao
Original Article
  • 42 Downloads

Abstract

In this work, we evaluate the upper tropospherichumidity (UTH) in a regional atmospheric model in conjunction with remote sensing observations and reanalysis products during the Indian summer monsoon (ISM). We performed continuous Weather Research and Forecast (WRF) model simulations from 1st May to 1st October for every year during 2001 to 2011 at 45 km spatial resolution. The maximum UTH zones viz. Bay of Bengal, and central and north-east Indian regions are well represented in WRF model when compared to the satellite observations and European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERAI) during ISM season. Analyses found that ERAI exhibits higher magnitudes of UTH over the ISM region compared to that of satellite observations (Atmospheric Infrared Sounder:AIRS) and WRF. In terms of spatial distribution, WRF is in close agreement with satellite observations as compared to ERAI, is further supported by the pattern correlation coefficients. In addition to that, our analysis suggested that WRF model could simulate the seasonal evolution of the northward movement of maximum UTH band as in AIRS and ERAI. However, UTH variability over the equatorial Indian Ocean and western north Pacific (north of Madagascar region) is underestimated (overestimated) in the WRF model compared to the observations. Nevertheless, the model is able to represent high (low) UTH over the north Indian Ocean region during active (break) period, unable to capture the northward propagation of UTH well. This indicates that the model has considerable discrepancies in simulating UTH over the deep convective monsoon region during the ISM season. It is suggested that in order to improve the UTH representation in the model over the ISM region, it is essential to reduce biases over the equatorial and southern tropical regions. Thus, this study emphasized the variations in UTH at different time scales during monsoon season along with the credibility of remote sensing observations in WRF model.

Keywords

Upper tropospheric humidity WRF model Indian summer monsoon 

Notes

Acknowledgements

The authors are grateful to NCAR, Boulder, Colorado, and USA for making the WRF-ARW model available. Authors are thankful to AIRS (http://disc.sci.gsfc.nasa.gov) as well as ECMWF for reanalysis (http://apps.ecmwf.int/datasets/data/interim_full_daily/) obtained from their data server. Thanks are also due to IMD and GPCP for providing the rainfall data used in this study. The authors would like to thank the anonymous reviewers for their insightful comments.

References

  1. Abhik, S., Mukhopadhyay, P., Goswami, B.: Evaluation of mean and intraseasonal variability of Indian summer monsoon simulation in ECHAM5: Identification of possible source of bias. Clim. Dyn. 43, 389–406 (2014)CrossRefGoogle Scholar
  2. Ajayamohan, R.S., Goswami, B.N.: Potential predictability of the Asian summer monsoon on monthly and seasonal time scales. Meteorog. Atmos. Phys. 84, 83–100 (2003).  https://doi.org/10.1007/s00703-002-0576-4 CrossRefGoogle Scholar
  3. Aumann, H.H., Chahine, M.T., Gautier, C., Goldberg, M.D., Kalnay, E., McMillin, L.M., Revercomb, et al.: AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing system. IEEE Trans. Geosci. Remote Sens. 41, 253–264 (2003)CrossRefGoogle Scholar
  4. Aumann, H.H., Ruzmaikin, A., Behrangi, A.: On the surface temperature sensitivity of the reflected shortwave, outgoing longwave, and net incident radiation. J. Clim. 25, 6585–6593 (2012)CrossRefGoogle Scholar
  5. Basha, G., Ratnam, M.V., Murthy, B.V.K.: Upper tropospheric water vapour variability over tropical latitudes observed using radiosonde and satellite measurements. J. Earth. Syst. Sci. 122, 1583 (2013).  https://doi.org/10.1007/s12040-013-0367 CrossRefGoogle Scholar
  6. Betts, A.K., Miller, M.J.: A new convective adjustment scheme. Part II: single column tests using GATE wave, BOMEX, and arcticair-mass data sets. Q. J. R. Meteorol. Soc. 112, 693–709 (1986)Google Scholar
  7. Brogniez, H., Roca, R., Picon, L.: A study of the free tropospheric humidity interannual variability using Meteosat data and an advection–condensation transport model. J. Clim. 22, 6773–6787 (2009).  https://doi.org/10.1175/2009JCLI2963.1
  8. Brown, R.G., Zhang, C.: Variability of midtropospheric moisture and its effect on cloud top height distribution during TOGA COARE. J. Atmos. Sci. 54, 2760–2774 (1997)CrossRefGoogle Scholar
  9. Chahine, M.T.: The hydrological cycle and its influence on climate. Nature. 359(6394), 373–380 (1992)CrossRefGoogle Scholar
  10. Chen, F., Dudhia, J.: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 Modeling System. Part I: Model implementation and sensitivity. Mon. Weather Rev. 129, 569–585 (2001)CrossRefGoogle Scholar
  11. Chen, C.T., Roeckner, E., Soden, B.J.: A comparison of satellite observations and model simulations of column-integrated moisture and upper-tropospheric humidity. J. Clim. 9, 1561–1585 (1996)CrossRefGoogle Scholar
  12. Chen, M., Rood, R.B., Read, W.G.: Seasonal variations of upper tropospheric water vapor and high clouds observed from satellites. J. Geophys. Res. 104(D6), 6193–6198 (1999)CrossRefGoogle Scholar
  13. Chen, S.H., Sun, W.Y.: A one dimensional time-dependent cloud model. J. Meteorol. Soc. Jpn. 80, 99–118 (2002)CrossRefGoogle Scholar
  14. Clark, H.L., Harwood, R.S.: Upper tropospheric humidity from MLS and ECMWF reanalysis. Mon. Weather Rev. 131, 542–555 (2003)CrossRefGoogle Scholar
  15. Danielsen, E.F.: A dehydration mechanism for the stratosphere. Geophys. Res. Lett. 9, 605–604 (1982)CrossRefGoogle Scholar
  16. Dessler, A.E., Sherwood, S.C.: A matter of humidity. Science. 323, 1020–1021 (2009).  https://doi.org/10.1126/science.1171264 CrossRefGoogle Scholar
  17. Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, et al.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q.J.R. Meteorol. Soc. 137, 553–597 (2011).  https://doi.org/10.1002/qj.828 CrossRefGoogle Scholar
  18. Divakarla, M.G., Barnet, C.D., Goldberg, M.D., McMillin, L.M., Maddy, E., Wolf, W., Zhou, L., Liu, X.: Validation of Atmospheric Infrared Sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts. J.Geophys. Res. 111, D09S15 (2006).  https://doi.org/10.1029/2005JD006116 CrossRefGoogle Scholar
  19. Dudhia, J.: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 46, 3077–3107 (1989)CrossRefGoogle Scholar
  20. Elliott, W.P., Gaffen, D.J.: On the utility of radiosonde humidity archives for climate studies. Bull. Am. Meteorol. Soc. 72, 1507–1520 (1991)CrossRefGoogle Scholar
  21. Gettelman, A., Collins, W.D., Fetzer, E.J., Eldering, A., Irion, F.W., Duffy, P.B., Bala, G.: Climatology of upper-tropospheric relative humidity from the atmospheric infrared sounder and implications for climate. J. Clim. 19, 6104–6121 (2006)CrossRefGoogle Scholar
  22. Goswami, B.N., Krishnamurthy, V., Annamalai, H.: A broad scale circulation index for the interannual variability of the Indian summer monsoon. Q. J. R.Meteorol. Soc. 125(554), 611–633 (1999)CrossRefGoogle Scholar
  23. Grabowski, W.W.: MJO-like coherent structures: sensitivity simulations using the cloud-resolving convection parameterization (CRCP). J. Atmos. Sci. 60, 847–864 (2003)CrossRefGoogle Scholar
  24. Hartmann, D.L., Michelsen, M.L.: No evidence for iris. Bull. Am. Meteorol. Soc. 83, 249–254 (2002)CrossRefGoogle Scholar
  25. Huffman, G.J., Adler, R.F., Morrissey, M., Bolvin, D.T., Curtis, S., Joyce, R., McGavock, B., Susskind, J.: Global precipitation at one degree daily resolution from multi-satellite observations. J. Hydrometeorol. 2, 36–50 (2001).  https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2 CrossRefGoogle Scholar
  26. Jangid, B.P., Kumar, P., Attada, R., Kumar, R.: Significance of high resolution GHRSST on prediction of Indian summer monsoon. Adv. Space Res. 59, 2349–2359 (2017).  https://doi.org/10.1016/j.asr.2017.02.025 CrossRefGoogle Scholar
  27. Janjic, Z.I.: The step-mountain eta coordinate model. Further developments of the convection, viscous sublayer and turbulence losure schemes. Mon. Weather. Rev. 122, 927–945 (1994)CrossRefGoogle Scholar
  28. Kumar, P., Shukla, M.V., Thapliyal, P.K., Bisht, J.H., Pal, P.K.: Evaluation of upper tropospheric humidity from NCEP analysis and WRF model forecast with Kalpana observation during Indian summer monsoon 2010. Meteorol. Appl. 19, 152–160 (2012)CrossRefGoogle Scholar
  29. Luo, Z., Kley, D., Johnson, R.H., Smit, H.: Ten years of measurements of tropical upper-tropospheric water vapor by mozaic. Part I: Climatology, variability, transport, and relation to deep convection. J. Clim. 20(3), 418–435 (2007).  https://doi.org/10.1175/JCLI3997.1 CrossRefGoogle Scholar
  30. Mlawer, E.J., Taubman, S.J., Brown, P.D., Iacono, M.J., Clough, S.A.: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J. Geophys. Res. 102(D14), 16663–16682 (1997)CrossRefGoogle Scholar
  31. Monin, A.S., Obukhov, A.M.: Basic laws of turbulent mixing in the surface layer of the atmosphere (in Russian). Contrib. Geophys. Inst. Acad. Sci. 151, 163–187 (1954)Google Scholar
  32. Newell, R., Gould-Stewart, E.S.: A stratospheric fountain. J. Atmos. Sci. 38, 2789–2796 (1981)CrossRefGoogle Scholar
  33. Noh, Y., Cheon, W.G., Hong, S.Y., Raasch, S.: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteorol. 107, 401–427 (2003)CrossRefGoogle Scholar
  34. Panwar, V., Jain, A.R., Goel, A., Mandal, T.K., Rao, V.R., Dhaka, S.K.: Some features of water vapor mixing ratio in tropical upper troposphere and lower stratosphere: Role of convection. Atmos. Res. 108, 86–103 (2012)CrossRefGoogle Scholar
  35. Parkinson, C.L.: Aqua: an Earth-observing satellite mission to examine water and other climate variables. IEEE. Trans.Geosci. Remote. Sens. 41, 173–183 (2003)CrossRefGoogle Scholar
  36. Pierrehumbert, R.T., Roca, R.: Evidence for control of Atlantic subtropical humidity by large scale advection. Geophys. Res. Lett. 25, 4537–4540 (1998).  https://doi.org/10.1029/1998GL900203 CrossRefGoogle Scholar
  37. Picon, L., Desbois, M.: Relation between Meteosat water vapor radiance fields and large scale tropical circulation features. J. Clim. 3, 865–876 (1990).  https://doi.org/10.1175/1520-0442(1990)003<0865:RBMWVR>2.0.CO;2 CrossRefGoogle Scholar
  38. Peixoto, J.P., Ort, A.H.: The climatology of relative humidity in the atmosphere. J. Clim. 9, 3443–3463 (1996).  https://doi.org/10.1175/1520-0442(1996)009,3443:TCORHI.2.0.CO;2 CrossRefGoogle Scholar
  39. Rajeevan, M., Bhate, J., Kale, J.D., Lal, B.: High resolution daily gridded rainfall data for the Indian region: analysis of break and active monsoon spells. Curr. Sci. 91(3), 296–306 (2006)Google Scholar
  40. Rajeevan, M., Gadgil, S., Bhate, J.: Active and break spells of the Indian summer monsoon. J. Earth. Syst. Sci. 119(3), 229–247 (2010)CrossRefGoogle Scholar
  41. Rajeevan, M., Rohini, P., Niranjan Kumar, K., Srinivasan, J., Unnikrishnan, C.K.: A study of vertical cloud structure of the Indian summer monsoon using CloudSat data. Clim. Dyn. 40, 637–650 (2013)CrossRefGoogle Scholar
  42. Raju, A., Parekh, A., Chowdary, J.S., Gnanaseelan, C.: Impact of satellite retrieved atmospheric temperature profiles assimilation on Asian summer monsoon simulation. Theor. Appl. Climatol. 116, 317–326 (2014a)CrossRefGoogle Scholar
  43. Raju, A., Parekh, A., Gnanaseelan, C.: Evolution of vertical moist thermodynamic structure associated with the Indian summer monsoon in a regional climate model. Pure Appl. Geophys. 171, 1499–1518 (2014b).  https://doi.org/10.1007/s00024-013-0697-3 CrossRefGoogle Scholar
  44. Raju, A., Parekh, A., Chowdary, J.S., Gnanaseelan, C.: Assessment of the Indian summer monsoon in the WRF regional climate model. Clim. Dyn. 44, 3077–3100 (2015a).  https://doi.org/10.1007/s00382-014-2295-1 CrossRefGoogle Scholar
  45. Raju, A., Parekh, A., Sreenivas, P., Chowdary, J.S., Gnanaseelan, C.: Estimation of improvement in Indian summer monsoon circulation by assimilation of temperature profiles in WRF model. IEEE. J. Sel. Top. Appl. Earth. Obs. Remote. Sens. (2015b).  https://doi.org/10.1109/JSTARS.2015.2410338
  46. Raju, A., Parekh, A., Kumar, P., Gnanaseelan, C.: Evaluation of the impact of AIRS profiles on prediction of Indian summer monsoon using WRF variational data assimilation system. J.Geophys. Res. Atmos. 120, (2015c).  https://doi.org/10.1002/2014JD023024
  47. Raju, A., Parekh, A., Chowdary, J.S., Gnanaseelan, C.: Reanalysis of the Indian summer monsoon: Four dimensional data assimilation of AIRS retrievals in a regional data assimilation and modeling framework. Clim. Dyn. 50, 2905–2923 (2018a).  https://doi.org/10.1007/s00382-017-3781-z CrossRefGoogle Scholar
  48. Raju, A., Kumar, P., Dasari, H.P.: Assessment of land surface models in a high-resolution atmospheric model during Indian summer monsoon. Pure Appl. Geophys. 175, 3671–3696 (2018b).  https://doi.org/10.1007/s00024-018-1868-z CrossRefGoogle Scholar
  49. Ruzmaikin, A., Aumann, H.H., Manning, E.M.: Relative humidity in the troposphere with AIRS. J. Atmos. Sci. 71, 2516–2533 (2014).  https://doi.org/10.1175/JAS-D-13-0363.1 CrossRefGoogle Scholar
  50. Sathiyamoorthy, V., Pal, P.K., Joshi, P.C.: Intraseasonal variability of the tropical easterly jet. Meteorog. Atmos. Phys. 96, 305–316 (2007)CrossRefGoogle Scholar
  51. Schmetz, J., Geijo, C., Menzel, W., Strabala, K., van de Berg, L., Holmlund, K., Tjemkes, S.: Satellite observations of upper tropospheric relative humidity, clouds and wind field divergence. Contrib. Atmos. Phys. 68, 345–357 (1995)Google Scholar
  52. Sikka, D.R., Gadgil, S.: On the maximum cloud zone and the ITCZ over India longitude during the southwest monsoon. Mon. Weather Rev. 108, 1840–1853 (1980)CrossRefGoogle Scholar
  53. Skamarock, W.C., Klemp, J., Dudhia, J., Gill, D.O., Barker, D.M., Wang, W., Powers, J.G.: A description of the advanced research WRF version 2. NCAR technical note, NCAR/TN-468 + STR. Mesoscale and Microscale Meteorology Division. National Center for Atmospheric Research, Boulder.CO.USA (2008)Google Scholar
  54. Soden, B.J., Fu, R.: A satellite analysis of deep convection, upper tropospheric humidity and the greenhouse effect. J. Clim. 8, 2333–2351 (1995)CrossRefGoogle Scholar
  55. Soden, B.J., Lanzante, J.R.: An assessment of satellite and radiosonde climatologies of upper-tropospheric water vapour. J. Clim. 9, 1235–1250 (1996)CrossRefGoogle Scholar
  56. Tian, B., Fetzer, E.J., Kahn, B.H., Teixeira, J., Manning, E., Hearty, T.: Evaluating CMIP5 Models using AIRS Tropospheric Air Temperature and Specific Humidity Climatology. J. Geophys. Res. Atmos. 118, 114–134 (2013).  https://doi.org/10.1029/2012JD018607 CrossRefGoogle Scholar
  57. Thapliyal, P.K., Shukla, M.V., Shah, S., Joshi, P.C., Pal, P.K., Ajil, K.S.: An algorithm for the estimation of upper tropospheric humidity from Kalpana observations: methodology and validation. J. Geophys. Res. 116, D01108 (2011).  https://doi.org/10.1029/2010JD014291 CrossRefGoogle Scholar
  58. Thiebaux, J., Rogers, E., Wang, W., Katz, B.: A new high resolution blended real-time global sea surface temperature analysis. Bull. Am.Meteorol. Soc. 84, 45–656 (2003)CrossRefGoogle Scholar
  59. Tobin, D.C., Revercomb, H.E., Knuteson, R.O., Lesht, B.M., Strow, L.L., Hannon, et al.: Atmospheric radiation measurement site atmospheric state best estimates for Atmospheric Infrared Sounder temperature and water vapor retrieval validation. J.Geophys. Res. 111, D09S14 (2006).  https://doi.org/10.1029/2005JD006103 CrossRefGoogle Scholar
  60. Webster, P.J., Palmer, T., Yanai, M., Tomas, R., Magana, V., Shukla, J., Yasunari, A.: Monsoons: processes, predictability and the prospects for prediction. J.Geophys. Res. 103, 14451–14510 (1998)CrossRefGoogle Scholar
  61. Wong, S., Fetzer, E.J., Tian, B., Lambrigtsen, B.: The apparent water vapor sinks and heat sources associated with the intraseasonal oscillation of the Indian summer monsoon. J. Clim. 24, 4466–4479 (2011)CrossRefGoogle Scholar
  62. Xavier, P.K., John, V.O., Buehler, S.A., Ajayamohan, R.S., Sijikumar, S.: Variability of Indian summer monsoon in a new upper tropospheric humidity data set. Geophys. Res. Lett. 37, L05705 (2010)CrossRefGoogle Scholar
  63. Yasunari, T.: A quasi-stationary appearance of the 30–40-day period in the cloudiness fluctuations during the summer monsoon over India. J. Meteorol. Soc. Jpn. 58, 225–229 (1980)CrossRefGoogle Scholar

Copyright information

© Korean Meteorological Society and Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Physical Sciences and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
  2. 2.Atmospheric and Oceanic Sciences GroupSpace Applications Centre (ISRO)AhmedabadIndia
  3. 3.Indian Institute of Tropical Meteorology (IITM)PuneIndia
  4. 4.Centre for Atmospheric SciencesIndian Institute of TechnologyDelhiIndia
  5. 5.Interdisciplinary Program for Climate StudiesIndian Institute of TechnologyMumbaiIndia
  6. 6.National Centre for Medium Range Weather ForecastingDelhiIndia

Personalised recommendations