Advertisement

Recent Climate Simulation over SAARC Region Including Bangladesh Using High Resolution AGCM

  • Md. Mizanur RahmanEmail author
  • Nazlee Ferdousi
  • Sk. Md. Abubakar Abdullah
  • Shoji Kusunoki
  • Ashikul Islam
Review Paper

Abstract

A study of recent climate simulation during the period 1979–2006 is carried out over Bangladesh with Meteorological Research Institute (MRI) global 20 km mesh Atmospheric General Circulation Model (AGCM), called MRI-AGCM. Skills of the model in simulating rainfall and temperature as well as frequency and intensity of extreme events are investigated at various temporal and spatial scales with a focus on mean surface air temperature and rainfall over Bangladesh. Initial and lateral boundary conditions are provided based on the IPCC SRES A1B scenario during the period 1979–2006. The MRI-AGCM shows good performance in simulating meteorological parameters such as rainfall and temperature and exhibits seasonal and inter-annual variations over the South Asian Association for Regional Cooperation (SAARC) region including Bangladesh with some persistent biases being present in summer monsoon rainfall. The model successfully simulates temperature over this region with a systematic cold bias due to the East-West temperature gradient. Simulated mean surface air temperature is compared with NCEP/NCAR reanalysis and CRU mean surface air temperature during the period 1979–2006 (28 years) for summer and winter seasons. Outputs from the MRI-AGCM show some fine scale structures that are missed by the NCEP/NCAR reanalysis products due to its coarse resolution. In general, the MRI-AGCM show a predominant cold bias of a few degrees (greater in summer than in winter) throughout the SAARC domain, the MRI-AGCM simulated rainfall shows good agreement with that of CRU and considerable discrepancies are found both with Global Precipitation Climatology Project (GPCP) and NCEP rainfall fields in the summer monsoon season. However, model simulated rainfall is relatively in good agreement with NCEP than GPCP. The statistical analysis such as correlation, bias and RMSE are derived between model and all observed data including station data, CRU, NCEP/NCAR and GPCP. Spatial and temporal patterns of summer monsoon rainfall of MRI-AGCM show almost similar pattern with different magnitudes. The high resolution MRI-AGCM rainfall is quantitatively in good agreement with GPCP, NCEP and CRU rainfall.

Keywords

MRI-AGCM Extreme Rainfall Temperature Simulation 

Notes

Acknowledgments

The first author is grateful to ICTP, Italy for providing the opportunity for research work at ICTP. The Bangladesh Meteorological Department (BMD) is acknowledged for providing observational data. We also acknowledge to MRI-Japan to provide high resolution model data.

References

  1. Allan, R.P., Soden, B.J.: Atmospheric warming and the amplification of precipitation extremes. Science. 321, 1481–1484 (2008).  https://doi.org/10.1126/science.1160787 CrossRefGoogle Scholar
  2. Allen, M.R., Ingram, W.J.: Constraints on future changes in climate and the hydrologic cycle. Nature. 419, 224–231 (2002)CrossRefGoogle Scholar
  3. Allen, M.R., Stott, P.A., Mitchell, J.F.B., Schnur, R., Delworth, T.L.: Quantifying the uncertainty in forecasts of anthropogenic climate change. Nature. 407, 617–620 (2000)CrossRefGoogle Scholar
  4. Annan, J.D., Hargreaves, J.C.: Reliability of the CMIP3 ensemble. Geophys. Res. Lett. 37, L02703 (2010).  https://doi.org/10.1029/2009GL041994 CrossRefGoogle Scholar
  5. Bates, B.C., Kundzewicz, Z.W., Wu S., Palutikof J.P. (eds.): Climate change and water, technical paper of the Intergovernmental Panel on Climate Change, 210 pp., Intergov. Panel on Clim. Change Secr., Geneva (2008)Google Scholar
  6. Christensen, J.H., Christensen, O.B.: Severe summertime flooding in Europe. Nature. 421, 805–806 (2003)CrossRefGoogle Scholar
  7. Coppola, E., Giorgi, F.: An assessment of temperature and precipitation change projections over Italy from recent global and regional climate model simulations. Int. J. Climatol. 30, 11–32 (2010).  https://doi.org/10.1002/joc.1867. CrossRefGoogle Scholar
  8. Coquard, J., Duffy, P., Taylor, K., Iorio, J.: Present and future surface climate in the western USA as simulated by 15 global climate models. Clim. Dyn. 23(5), 455–472 (2004).  https://doi.org/10.1007/s00382-004-0437-6 CrossRefGoogle Scholar
  9. Dai, A., Trenberth, K.E., Karl, T.R.: Global variations in droughts and wet spells:1900-1995. Geophys. Res. Lett. 25(17), 3367–3370 (1998)CrossRefGoogle Scholar
  10. Dai, A., Trenberth, K.E., Qian, T.: A global data set of palmer drought severity index for1870-2002: relationship with soil moisture and effects of surface warming. J. Hydrometeorol. 5, 1117–1130 (2004)CrossRefGoogle Scholar
  11. Dash, S.K., Kulkarni, M.A., UC Mohanty, K.P.: Changes in the characteristics of rain events in India. J. Geophys. Res. 114, D10109 (2009).  https://doi.org/10.1029/2008JD010572. CrossRefGoogle Scholar
  12. Duan, Q., Phillips, T.J.: Bayesian estimation of local signal and noise in multimodel simulations of climate change. J. Geophys. Res. 115, D18123 (2010).  https://doi.org/10.1029/2009JD013654 CrossRefGoogle Scholar
  13. Feng, S.F., Krueger, A.B., Oppenheimer, M.: Linkages among climate change, crop yields and Mexico-US cross-border migration. Proc. Natl. Acad. Sci. 107(32), 14257–14262 (2010)CrossRefGoogle Scholar
  14. Gao, X., Pal, J.S., Giorgi, F.: Projected changes in mean and extreme precipitation over the Mediterranean region from latest issue double nested RCM simulations. Geophys. Res. Lett. 33, L03706 (2006)CrossRefGoogle Scholar
  15. Giorgi, F., Mearns, L.O.: Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the “reliability ensemble averaging” (REA) method. J. Clim. 15, 1141–1158 (2002)CrossRefGoogle Scholar
  16. Grainger, S., Frederiksen, C.S., Zheng, X.: Modes of interannual variability of southern hemisphere atmospheric circulation in CMIP3 models: assessment and projections. Clim. Dyn. 41, 479–500 (2013).  https://doi.org/10.1007/s00382-012-1659-7 CrossRefGoogle Scholar
  17. Held, I.M., Soden, B.J.: Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006)CrossRefGoogle Scholar
  18. Hennessy, K.J., Gregory, J.M., Mitchell, J.F.B.: Changes in daily precipitation under enhanced greenhouse conditions. Clim. Dyn. 13(9), 667–680 (1997)CrossRefGoogle Scholar
  19. Hirai, M., Sakashita, T., Kitagawa, H., Tsuyuki, T., Hosaka, M., Oh’izumi, M.: Development and validation of a new land surface model for JMA’s operational global model using the CEOP observation dataset. J. Meteorol. Soc. Jpn. 85A, 1–24 (2007).  https://doi.org/10.2151/jmsj.85A.1 CrossRefGoogle Scholar
  20. Im, E.-S., Park, E.-H., Kwon, W.-T., Giorgi, F.: Present climate simulation over Korea with a regional climate model using a one-way double-nested system. Theor. Appl. Climatol. 86, 187–200 (2006).  https://doi.org/10.1007/S00704-005-0215-3 CrossRefGoogle Scholar
  21. IPCC: Climate Change. The IPCC Scientific Assessment, 1990: Cambridge University Press, Cambridge (1990)Google Scholar
  22. IPCC, 2001: Climate change, 2001: the scientific basis. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, vander Linden PJ, Dai X, Maskell K, Johnson CA (eds) Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge.Google Scholar
  23. IPCC: Climate Change, 2007: the Scientific Basis. Contribution of Working Group I to the Fourth Assessment Report of the Inter-Governmental Panel on Climate Change. Cambridge University Press, Cambridge (2007)Google Scholar
  24. Jhun, J.G., Lee, E.G.: A new east Asian winter monsoon index and associated characteristics of the winter monsoon. J. Clim. 17(4), 711–726 (2004)CrossRefGoogle Scholar
  25. Kato, H., Hirakuchi, H., Nishizawa, K., Giorgi, F.: The performance of NCAR RegCM in the simulation of June and January climates over eastern Asia and the high resolution effect of the model. J. Geophys. Res. 104, 6455–6476 (1999)CrossRefGoogle Scholar
  26. Kato, H., Nishizawa, K., Hirakuchi, H., Kadokura, S., Oshima, N., Giorgi, F.: Performance of RegCM2.5/NCAR-CSM nested system for the simulation of climate change in East Asia caused by global warming. J. Meteorol. Soc. Jpn. 79, 99–121 (2001)CrossRefGoogle Scholar
  27. Kim, K.-Y., North, G.: EOFs of harmonizable cyclostionary processes. J. Atmos. Sci. 54, 2416–2427 (1997)CrossRefGoogle Scholar
  28. Krishnamurti, T.N., Kishitawal, C.M., Zhang, Z., Larow, T., Bachiochi, D., Williford, E.: Multimodel ensemble forecasts for weather and seasonal climate. J. Clim. 13, 4196–4216 (2000)CrossRefGoogle Scholar
  29. Lambert, S.J., Boer, G.J.: CMIP1 evaluation and intercomparison of coupled climate models. Clim. Dyn. 17, 83–106 (2001)CrossRefGoogle Scholar
  30. Li, H., Feng, L., Zhou, T.: Multi-model projection of July-august climate extreme changes over China under CO2 doubling. Part I: precipitation. Adv. Atmos. Sci. 28, 433–447 (2011)CrossRefGoogle Scholar
  31. McAfee, S.A., Russell, J.L., Goodman, P.J.: Evaluating IPCC AR4 cool-season precipitation simulations and projections for impacts assessment over North America. Clim. Dyn. 37, 2271–2287 (2011).  https://doi.org/10.1007/s00382-011-1136-8 CrossRefGoogle Scholar
  32. Mearns, L.O., Giorgi, F., McDaniel, L., Shields, C.: Analysis of variability and diurnal range of daily temperature in a nested regional climate model: comparison with observations and doubled CO2 results. Clim. Dyn. 11, 193–209 (1995)CrossRefGoogle Scholar
  33. Meehl, G.A., Arblaster, J.M., Tebaldi, C.: Understanding future patterns of increased precipitation intensity in climate model simulations. Geophys. Res. Lett. 32, L18719 (2005).  https://doi.org/10.1029/2005GL023680 CrossRefGoogle Scholar
  34. Miao, Y.F., Fang, X.M., Herrmann, M., Wu, F.L., Liu, D.L.: Miocene pollen record of KC-1 core in the Qaidam Basin, NE Tibetan plateau and implications for evolution of the east Asian monsoon. Palaeogeogr. Palaeocl. 299, 30–38 (2011)CrossRefGoogle Scholar
  35. Miao, C., Duan, Q., Yang, L., Borthwick, A.G.L.: On the applicability of temperature and precipitation data from CMIP3 for China. PLoS One. 7, e44659 (2012)CrossRefGoogle Scholar
  36. Miao, Y., Liu, Y., Dai, Y., Yang, A.: Impact of urbanization on boundary layer structure in Beijing. Clim. Chang. 120, 123–136 (2013)CrossRefGoogle Scholar
  37. Mizuta, R., Oouchi, K., Yoshimura, H., Noda, A., Katayama, K., Yukimoto, S., Hosaka, M., Kusunoki, S., Kawai, H., Nakagawa, M.: 20-km-mesh global climate simulations using JMA-GSM model-mean climate states. J. Meteorol. Soc. Jpn. 84, 165–185 (2006).  https://doi.org/10.2151/jmsj.84.165. CrossRefGoogle Scholar
  38. Mizuta, R., Adachi, Y., Yukimoto, S., Kusunoki, S.: Estimation of the future distribution of sea surface temperature and sea ice using the CMIP3 multi-model ensemble mean. Technical Report of the Meteorological Research Institute. 56, 28 (2008)Google Scholar
  39. O’Gorman, P.A., Schneider, T.: Scaling of precipitation extremes over a wide range of climates simulated with an idealized GCM. J. Clim. 22, 5676–5685 (2009)CrossRefGoogle Scholar
  40. Ou, T., Chen, D., Linderholm, H.W., Jeong, J.H.: Evaluation of global climate models in simulating extreme precipitation in China. Tellus A. 65, 19799 (2013).  https://doi.org/10.3402/tellusa.v65i0.19799 CrossRefGoogle Scholar
  41. Phillips TJ, Gleckler PJ, 2006: Evaluation of continental precipitation in 20th century climate simulations: The utility of multi-model statistics. Water Resour. Res. 42:  https://doi.org/10.1029/2005WR004313
  42. Rahman MM: A validation of regional climate model simulation with observational data over Bangladesh: M. Phil. thesis, Bangladesh University of Engineering & Technology (BUET) Library, Dhaka, Bangladesh, (2006)Google Scholar
  43. Rahman, M.M., Nazrul, I.M., Ahmed, A.U., Afroz, R.: Comparison of RegCM3 simulated meteorological parameters in Bangladesh: part I-preliminary result for rainfall. Sri Lankan J. Physics. 8(2007), 1–9 (2007)CrossRefGoogle Scholar
  44. Räisänen, J.: How reliable are climatemodels? Tellus A. 59, 2–29 (2007).  https://doi.org/10.1111/j.1600-0870.2006.00211.x CrossRefGoogle Scholar
  45. Reichler, T., Kim, J.: How well do coupled models simulate Today's climate? Bull. Amer. Meteor. Soc. 89, 303–311 (2008a)CrossRefGoogle Scholar
  46. Reichler, T., Kim, J.: Uncertainties in the climate mean state of global observations, reanalyses, and the GFDL climate model. J. Geophys. Res. 113, D05106 (2008b).  https://doi.org/10.1029/2007JD009278 CrossRefGoogle Scholar
  47. Scherrer, S.C.: Present-day interannual variability of surface climate in CMIP3 models and its relation to future warming. Int. J. Climatol. 31, 1518–1529 (2011)CrossRefGoogle Scholar
  48. Sillmann, J., Kharin, V.V., Zwiers, F.W., Zhang, X., Bronaugh, D.: Climate extremes indices in the CMIP5 multimodel ensemble: part 2. Future climate projections. J. Geophys. Res. Atmos. 118, 2473–2493 (2013).  https://doi.org/10.1002/jgrd.50188 CrossRefGoogle Scholar
  49. Solomon, S., et al. (eds.): Climate Change, 2007. The Physical Science Basis (Cambridge Univ. Press for the Intergovernmental Panel on Climate Change, Cambridge (2007)Google Scholar
  50. Sugiyama, M., Shiogama, H., Emori, S.: Precipitation extreme changes exceeding moisture content increases in MIROC and IPCC climate models. Proc. Natl. Acad. Sci. U. S. A. 107, 571–575 (2010)CrossRefGoogle Scholar
  51. Tebaldi, C., Knutti, R.: The use of the multi-model ensemble in probabilistic climate projections. Trans. R. Soc. A. 365(1857), 2053–2075 (2007)Google Scholar
  52. Tebaldi, C., Arblaster, J.M., Hayhoe, K., Meehl, G.A.: Going to the extremes: an intercomparison of model-simulated historical and future changes in extreme events. Clim. Chang. 79, 185–211 (2006).  https://doi.org/10.1007/s10584-006-9051-4 CrossRefGoogle Scholar
  53. Trenberth, K.E.: Atmospheric moisture recycling: role of advection and local evaporation. J. Clim. 12, 1368–1381 (1999)CrossRefGoogle Scholar
  54. Trenberth, K.E., Dai, A., Rasmussen, R.M., Parsons, D.B.: The changing character of precipitation. Bull. Am. Meteorol. Soc. 84, 1205–1217 (2003)CrossRefGoogle Scholar
  55. Wu, T., Li, W., Ji, J., Xin, X., Li, L., Wang, Z., Zhang, Y., Li, J., Zhang, F., Wei, M., Shi, X., Wu, F., Zhang, L., Chu, M., Jie, W., Liu, Y., Wang, F., Liu, X., Li, Q., Dong, M., Liang, X., Gao, Y., Zhang, J.: Global carbon budgets simulated by the Beijing climate center climate system model for the last century. J. Geophys. Res. Atmos. 118, 4326–4347 (2013).  https://doi.org/10.1002/jgrd.50320 CrossRefGoogle Scholar
  56. Xu, Y., Gao, X., Giorgi, F.: Upgrades to the reliability ensemble averaging method for producing probabilistic climate-change projections. Clim. Res. 41, 61–81 (2010).  https://doi.org/10.3354/cr00835 CrossRefGoogle Scholar
  57. Xu, C., Luo, Y., Xu, Y.: Projected changes of precipitation extremes in river basins over China. Quat. Int. 244, 149–158 (2011).  https://doi.org/10.1016/j.quaint.2011.01.002 CrossRefGoogle Scholar
  58. Zhou, T., Yu, R.: Twentieth century surface air temperature over China and the globe simulated by coupled climate models. J. Clim. 19(22), 5843–5858 (2006)CrossRefGoogle Scholar

Copyright information

© Korean Meteorological Society and Springer Nature B.V. 2019

Authors and Affiliations

  • Md. Mizanur Rahman
    • 1
    Email author
  • Nazlee Ferdousi
    • 2
  • Sk. Md. Abubakar Abdullah
    • 3
  • Shoji Kusunoki
    • 4
  • Ashikul Islam
    • 1
  1. 1.Department of Electronics and Communications EngineeringEast West UniversityJahurul Islam CityBangladesh
  2. 2.SAARC Meteorological Research Centre (SMRC)AgargaonBangladesh
  3. 3.School of Integrated Climate System SciencesUniversity of HamburgHamburgGermany
  4. 4.Climate Research Department, First Research Laboratory (Climate modeling)Meteorological Research Institute (MRI)TsukubaJapan

Personalised recommendations