Advertisement

Characteristics of Annual and Seasonal Trends of Rainfall and Temperature in Iraq

  • Saleem A. SalmanEmail author
  • Shamsuddin Shahid
  • Tarmizi Ismail
  • Kamal Ahmed
  • Eun-Sung Chung
  • Xiao-Jun Wang
Original Article
  • 15 Downloads

Abstract

Changes in the temperature and precipitation have significantly affected water resources and agricultural productions in many countries across the world. The objective of the present study is to analyze the changing patterns of annual and seasonal precipitation and temperature in Iraq for the period 1961–2010. Monthly gridded precipitation and temperature data of Global precipitation climate center (GPCC) and climate research unit (CRU) respectively having a spatial resolution of 0.5° were used in this study to show the spatial pattern in trends. The rate of change in rainfall and temperature was estimated using Sen’s slope method while the significance of change was confirmed using Mann-Kendal test (MK) and the modified Mann-Kendall test (mMK). The results revealed large differences in the number of grid points showing significant changes in rainfall and temperature using MK and mMK methods. The mMK method revealed that the annual rainfall is decreasing at a rate of −1.0 to −5.0 mm/year in the northwest part of Iraq. The seasonal precipitations were found to decrease in spring (−0.4 to −2.56 mm/year) and winter (−0.4 to −2.0 mm/year), increase in summer (0.06 to 0.21 mm/year) at a few grid points and no change in autumn. On the other hand, a sharp rise in annual average of daily mean (0.42 to 0.64 °C/decade), maximum (0.39 to 0.65 °C/decade) and minimum (0.36 to 0.69 °C/decade) temperature was observed.

Keywords

Temperature Precipitation Modified Mann-Kendal test Gridded climate data Iraq 

Notes

Acknowledgements

The authors are grateful to Universiti Teknologi Malaysia to support this research through Research University Grant (RUG) no. 19H44 and 13H07.

References

  1. Agha, O.M.M., Şarlak, N.: Spatial and temporal patterns of climate variables in Iraq. Arab. J. Geosci. 9(4), 302 (2016)CrossRefGoogle Scholar
  2. Ahmed, K., Shahid, S., Chung, E.S., Ismail, T., Wang, X.J.: Spatial distribution of secular trends in annual and seasonal precipitation over Pakistan. Clim. Res. 74(2), 95–107 (2017a)CrossRefGoogle Scholar
  3. Ahmed, K., Shahid, S., Alid, R.O., Harun, S.B., Wange, X.J.: Evaluation of the performance of gridded precipitation products over Balochistan Province, Pakistan. Desalination. 1, 14 (2017b)Google Scholar
  4. Al Senafi, F., Anis, A.: Shamals and climate variability in the northern Arabian/Persian gulf from 1973 to 2012. Int. J. Climatol. 35(15), 4509–4528 (2015)CrossRefGoogle Scholar
  5. Almazroui, M., Islam, M.N., Jones, P.D., Athar, H., Rahman, M.A.: Recent climate change in the Arabian peninsula: seasonal rainfall and temperature climatology of Saudi Arabia for 1979–2009. Atmos. Res. 111, 29–45 (2012)CrossRefGoogle Scholar
  6. Al-Salihi, A.M., Al-Lami, A.M., Altimimi, Y.K.: Spatiotemporal analysis of annual and seasonal rainfall trends for Iraq. Al-Mustansiriyah. J. Sci. 25(1), 153–168 (2014)Google Scholar
  7. AlSarmi, S.H., Washington, R.: Changes in climate extremes in the Arabian peninsula: analysis of daily data. Int. J. Climatol. 34(5), 1329–1345 (2014)CrossRefGoogle Scholar
  8. Badry, M. M., Mehdi, M. S., & Khawar, J. M. (1980). Water resources in Iraq. Water resources in Iraq., 315–326Google Scholar
  9. Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., Schamm, K., Schneider, U., Ziese, M.: A description of the global land-surface precipitation data products of the global precipitation climatology Centre with sample applications including centennial (trend) analysis from 1901-present. Earth Syst Sci Data. 5(1), 71–99 (2013)CrossRefGoogle Scholar
  10. Bishay, F. K. (2003). Towards sustainable agricultural development in Iraq. The transition from relief, rehabilitation and reconstruction to developmentGoogle Scholar
  11. Black, E., Brayshaw, D.J., Rambeau, C.M.: Past, present and future precipitation in the Middle East: insights from models and observations. Philos. Trans. Royal Soc. A 368(1931), 5173–5184 (2010)CrossRefGoogle Scholar
  12. Constantin, E., Kadir, K., Dragomir, C., & Maracineanu, F. (2014). Studies on climate variability in the Arbil area, IRAQ. 14th SGEM GeoConference on Energy and Clean Technologies, 2(SGEM2014 Conference Proceedings, ISBN 978–619-7105-16-2/ISSN 1314–2704, June 19–25, 2014, Vol. 2), 517–522Google Scholar
  13. Donat, M.G., Peterson, T.C., Brunet, M., King, A.D., Almazroui, M., Kolli, R.K., et al.: Changes in extreme temperature and precipitation in the Arab region: long-term trends and variability related to ENSO and NAO. Int. J. Climatol. 34(3), 581–592 (2014)CrossRefGoogle Scholar
  14. Dutta, S., Chaudhuri, G.: Evaluating environmental sensitivity of arid and semiarid regions in northeastern Rajasthan, India. Geogr. Rev. 105(4), 441–461 (2015)CrossRefGoogle Scholar
  15. El Kenawy, A.M., McCabe, M.F.: A multi-decadal assessment of the performance of gauge-and model-based rainfall products over Saudi Arabia: climatology, anomalies and trends. Int. J. Climatol. 36(2), 656–674 (2016)CrossRefGoogle Scholar
  16. Fisher, W. (1994). Iraq: Physical and Social Geography in the Middle East and North AfricaGoogle Scholar
  17. Ghasemi, A.R.: Changes and trends in maximum, minimum and mean temperature series in Iran. Atmos. Sci. Lett. 16(3), 366–372 (2015)CrossRefGoogle Scholar
  18. Hamed, K.H.: Trend detection in hydrologic data: the Mann–Kendall trend test under the scaling hypothesis. J. Hydrol. 349(3), 350–363 (2008)CrossRefGoogle Scholar
  19. Harris, I.P.D.J., Jones, P.D., Osborn, T.J., Lister, D.H.: Updated high-resolution grids of monthly climatic observations–the CRU TS3. 10 Dataset. Int. J. Climatol. 34(3), 623–642 (2014)CrossRefGoogle Scholar
  20. Hassan, W.H., Nile, B.K., Al-Masody, B.A.: Climate change effect on storm drainage networks by storm water management model. Environ. Eng. Res. 22(4), 393–400 (2017)CrossRefGoogle Scholar
  21. Jasem, M.M.: Features and trends of rainfall for selected stations in Iraq. J Coll Educ. 1(1), 331–346 (2012)Google Scholar
  22. Kendall, M. G. (1948). Rank Correlation MethodsGoogle Scholar
  23. Khan, N., Shahid, S., Ismail, T., Wang, X.-J.: Spatial distribution of unidirectional trends in temperature and temperature extremes in Pakistan. Theor. Appl. Climatol. (2018).  https://doi.org/10.1007/s00704-018-2520-7
  24. Koutsoyiannis, D.: Climate change, the Hurst phenomenon, and hydrological statistics. Hydrol. Sci. J. 48(1), 3–24 (2003)CrossRefGoogle Scholar
  25. Krishna, L.V.: Long term temperature trends in four different climatic zones of Saudi Arabia. Int. J. Appl. 4(5), (2014)Google Scholar
  26. Lelieveld, J., Hadjinicolaou, P., Kostopoulou, E., Chenoweth, J., El Maayar, M., Giannakopoulos, C., ... & Xoplaki, E. (2012). Climate change and impacts in the eastern Mediterranean and the Middle East. Clim. Chang., 114(3–4), 667–687Google Scholar
  27. Malinowski, J. C. (2002). Iraq: a GeographyGoogle Scholar
  28. Mann, H.B.: Nonparametric tests against trend. Econometrica. J. Econ. Soc. 13, 245–259 (1945)Google Scholar
  29. Mayowa, O.O., Pour, S.H., Shahid, S., Mohsenipour, M., Harun, S.B., Heryansyah, A., Ismail, T.: Trends in rainfall and rainfall-related extremes in the east coast of peninsular Malaysia. J. Earth Syst. Sci. 124(8), 1609–1622 (2015)CrossRefGoogle Scholar
  30. Muslih, K.D., Błażejczyk, K.: The inter-annual variations and the long-term trends of monthly air temperatures in Iraq over the period 1941–2013. Theor. Appl. Climatol. 130(1–2), 583–596 (2017)CrossRefGoogle Scholar
  31. Najafi, M.R., Moazami, S.: Trends in total precipitation and magnitude–frequency of extreme precipitation in Iran, 1969–2009. Int. J. Climatol. 36(4), 1863–1872 (2016)CrossRefGoogle Scholar
  32. Nashwan, M.S., Shahid, S., Rahim, N.A.: Unidirectional trends in annual and seasonal climate and extremes in Egypt. Theor. Appl. Climatol. 1–17 (2018)Google Scholar
  33. Pour, S.H., Harun, S.B., Shahid, S.: Genetic programming for the downscaling of extreme rainfall events on the East Coast of peninsular Malaysia. Atmosphere. 5(4), 914–936 (2014)CrossRefGoogle Scholar
  34. Robaa, E.S.M., Al-Barazanji, Z.: Mann-Kendall trend analysis of surface air temperatures and rainfall in Iraq. IDOJARAS. 119(4), 493–514 (2015)Google Scholar
  35. Sa’adi, Z., Shahid, S., Ismail, T., Chung, E. S., & Wang, X. J. (2017a). Trends analysis of rainfall and rainfall extremes in Sarawak, Malaysia using modified Mann–Kendall test. Meteorology and Atmospheric Physics, 1–15Google Scholar
  36. Sa’adi, Z., Shahid, S., Ismail, T., Chung, E.S., Wang, X.J.: Distributional changes in rainfall and river flow in Sarawak, Malaysia. Asia-Pac. J. Atmos. Sci. 53(4), 489–500 (2017b)CrossRefGoogle Scholar
  37. Salman, S.A., Shahid, S., Ismail, T., Chung, E.S., Al-Abadi, A.M.: Long-term trends in daily temperature extremes in Iraq. Atmos. Res. 198, 97–107 (2017a)CrossRefGoogle Scholar
  38. Salman, S.A., Shahid, S., Ismail, T., Rahman, N.B.A., Wang, X., Chung, E.S.: Unidirectional trends in daily rainfall extremes of Iraq. Theor. Appl. Climatol. 1–13 (2017b)Google Scholar
  39. Sarmadi, F., Shokoohi, A.: Regionalizing precipitation in Iran using GPCC gridded data via multivariate analysis and L-moment methods. Theor. Appl. Climatol. 122(1–2), 121–128 (2015)CrossRefGoogle Scholar
  40. Sen, P.K.: Estimates of the regression coefficient based on Kendall's tau. J. Am. Stat. Assoc. 63(324), 1379–1389 (1968)CrossRefGoogle Scholar
  41. Soltani, M., Laux, P., Kunstmann, H., Stan, K., Sohrabi, M. M., Molanejad, M., ... & Zawar-Reza, P. (2016). Assessment of climate variations in temperature and precipitation extreme events over Iran. Theor. Appl. Climatol., 126(3–4), 775–795Google Scholar
  42. UNDP, Ragab R. (2013). Water Governance in the Arab Region: Managing Scarcity and Securing the futureGoogle Scholar
  43. Yildirim, H.A., Altinsoy, H.: Chaos and trend analysis of monthly precipitation over Arabian peninsula and eastern Mediterranean. Arab. J. Geosci. 10(2), 21 (2017)CrossRefGoogle Scholar
  44. Yue, S., Wang, C.: The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour. Manag. 18(3), 201–218 (2004)CrossRefGoogle Scholar
  45. Zarenistanak, M., Dhorde, A.G., Kripalani, R.H.: Temperature analysis over Southwest Iran: trends and projections. Theor. Appl. Climatol. 116(1–2), 103–117 (2014)CrossRefGoogle Scholar

Copyright information

© Korean Meteorological Society and Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of EngineeringUniversiti Teknologi MalaysiaJohor BahruMalaysia
  2. 2.Faculty of Civil EngineeringSeoul National University of Science and TechnologySeoulRepublic of Korea
  3. 3.State Key Laboratory of Hydrology-Water Resources and Hydraulic EngineeringNanjing Hydraulic Research InstituteNanjingChina

Personalised recommendations