Advertisement

Abrupt Decrease of Wintertime Cold Nights in Korea in the Late 1980s

  • Yeong-Eun Yoo
  • Seok-Woo Son
  • Jong-Hwa Lee
  • Seung-Ki Min
Original Article
  • 8 Downloads

Abstract

The decadal change of wintertime cold nights in Korea and its relationship with atmospheric circulation are investigated. Wintertime cold nights, defined as the nights when the daily minimum temperaturesare lower thantheir 10th percentile, are calculated for 10 Korean Meteorological Administration (KMA) stations over the period of 1960–2015. In all stations, the number of cold nights sharply decreased in the late 1980s. Astep-wise changeis largely due to the reduction in long-lasting events persisting for three consecutive nightsor longer. It is further found that the cold nights before and after the late 1980s areassociated with different synoptic and large-scale circulation patterns. While the pre-1980 events aremaintained by aneast-westdipolar sea level pressure (SLP) pattern with an anomalous high over Northern China and an anomalous low in the western North Pacific, the post-1990 events arecharacterized by a north-south dipole with an enhanced impact from Siberia and a reduced influence from the western North Pacific. In accordance with these synoptic patterns, the Pacific-related climate variability indices, such as the Pacific-North American (PNA) teleconnection index, exhibita negligible interannual relationship with the number of cold nights in the post-1990. These results suggest that the wintertime cold extremes over Korea in recent decades are influenced by different circulation patterns from those in the 1970s and 1980s.

Keywords

Cold nights Korea Climate indices 

Notes

Acknowledgements

This work was funded by the Korea Meteorological Administration Research andDevelopment Program under Grant KMI(2018-01011).

References

  1. Alexander, L.V., et al.: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. 111(D5), D05109 (2006).  https://doi.org/10.1029/2005JD006290 CrossRefGoogle Scholar
  2. Ansari, A.R., Bradley, R.A.: Rank-sum tests for dispersions. Ann. Math. Stat. 31(4), 1174–1189 (1960).  https://doi.org/10.1214/aoms/1177705688 CrossRefGoogle Scholar
  3. Choi, G., Kim, J.: Synoptic climatic patterns for winter extreme low temperature events in the Republic of Korea. J. Korean Geogr. Soc. 50, 1–21 (2015)Google Scholar
  4. Choi, G., Kwon, W.-T., Boo, K.-O., Cha, Y.-M.: Recent spatial and temporal changes in means and extreme events of temperature and precipitation across the Republic of Korea. J. Korean Geogr. Soc. 43(5), 681–700 (2008)Google Scholar
  5. Choi, J.-W., Cha, Y., Kim, J.-Y., Park, C.-H.: Interdecadal changes in the number of days on which temperature are not higher than −5°C in winter in Seoul. J. Climate. Chang. Res. 7(1), 49–57 (2016).  https://doi.org/10.15531/ksccr.2016.7.1.49 CrossRefGoogle Scholar
  6. Fischer, T., Gemmer, M., Liu, L., Su, B.: Change-points in climate extremes in the Zhujiang River basin, South China, 1961–2007. Clim. Chang. 110(3–4), 783–799 (2012).  https://doi.org/10.1007/s10584-011-0123-8 CrossRefGoogle Scholar
  7. Franzke, C.: A novel method to test for significant trends in extreme values in serially dependent time series. Geophys. Res. Lett. 40(7), 1391–1395 (2013).  https://doi.org/10.1002/grl.50301 CrossRefGoogle Scholar
  8. Heo, I.H., Lee, S.-H.: Changes of unusual temperature events and their controlling factors in Korea. J. Korean Geogr. Soc. 41, 94–105 (2006)Google Scholar
  9. Im, E.S., Ahn, J.-B.: Analysis of relationship between Korean winter temperature variability and global circulation indices. Asia-Pacific. J. Atmos.Sci. 40, 441–452 (2004)Google Scholar
  10. IPCC.: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. In: Field, C.B., V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J. Mach, G.-K. Plattner, S.K. Allen, M. Tignor,P.M. Midgley (eds.). Cambridge University Press, 582 pp (2012)Google Scholar
  11. IPCC.: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P. M. Midgley (eds.). Cambridge University Press, 1350 pp (2013)Google Scholar
  12. Jhun, J.-G., Lee, E.-J.: A new east Asian winter monsoon index and associated characteristics of the winter monsoon. J. Clim. 17(4), 711–726 (2004).  https://doi.org/10.1175/1520-0442(2004)017<0711:ANEAWM>2.0.CO;2 CrossRefGoogle Scholar
  13. Kiktev, D., Sexton, D. M., Alexander, L., Folland, C. K.: Comparison of modeled and observed trends in indices of daily climate extremes. J. Clim. 16, 3560–3571 (2003).  https://doi.org/10.1175/1520-0442(2003)016<3560:COMAOT>2.0.CO;2 CrossRefGoogle Scholar
  14. Kim, S.-W., Song, K., Kim, S.-Y., Son, S.-W., Franzke, C.: Linear and nonlinear trends of extreme temperatures in Korea. Atmosphere. 24(3), 379–390 (2014).  https://doi.org/10.14191/Atmos.2014.24.3.379 CrossRefGoogle Scholar
  15. Kim, Y.-H., Kim, M.-K., Lau, W., Kim, K.-M., Cho, C.-H.: Possible mechanism of abrupt jump in winter surface air temperature in the late 1980s over the northern hemisphere. J. Geophys. Res. 120(24), 12474–12485 (2015).  https://doi.org/10.1002/2015JD023864 CrossRefGoogle Scholar
  16. Kim, Y.-H., Min, S.-K., Zhang, X., Zwiers, F., Alexander, L. V., Donat, M. G., Tung, Y.-S.: Attribution of extreme temperature changes during 1951-2010. Clim. Dyn. 46, 1769-1782 (2016).  https://doi.org/10.1007/s00382-015-2674-2 CrossRefGoogle Scholar
  17. Kwon, M.-H., Jhun, J.-G., Wang, B., Ahn, S.-I., Kug, J.-S.: Decadal change in relationship between east Asian and WNP summer monsoons. Geophys. Res. Lett. 32(16), L16709 (2005).  https://doi.org/10.1029/2005GL023026 CrossRefGoogle Scholar
  18. Lee, K., Sung, J.-H., Kim, Y.-O., Lee, S.: Change-point analysis of mean temperature and extreme temperature in the Republic of Korea. J. Korean Geogr. Soc. 46(5), 583–596 (2011)Google Scholar
  19. Lee, M.-H., Ho, C.-H., Kim, J., Song, C.-K.: Assessment of the changes in extreme vulnerability over East Asia due to global warming. Clim. Chang. 113(2), 301–321 (2012).  https://doi.org/10.1007/s10584-011-0345-9 CrossRefGoogle Scholar
  20. Lee, K., Baek, H.-J., Cho, C.: Analysis of changes in extreme temperatures using quantile regression. Asia-Pac. J. Atmos. Sci. 49(3), 313–323 (2013a).  https://doi.org/10.1007/s13143-013-0030-1 CrossRefGoogle Scholar
  21. Lee, S.-S., Kim, S.-H., Jhun, J.-G., Ha, K.-J., Seo, Y.-W.: Robust warming over East Asia during the boreal winter monsoon and its possible causes. Environ. Res. Lett. 8, 034001 (2013b).  https://doi.org/10.1088/1748-9326/8/3/034001 CrossRefGoogle Scholar
  22. Lepage, Y.: A combination of Wilcoxon's and Ansari-Bradley's statistics. Biometrika. 58(1), 213–217 (1971).  https://doi.org/10.1093/biomet/58.1.213 CrossRefGoogle Scholar
  23. Mann, H.-B., Whitney, D.R.: On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18(1), 50–60 (1947)CrossRefGoogle Scholar
  24. Min, S.-K., Zhang, X., Zwiers, F., Shiogama, H., Tung, Y.-S., Wehner, M.: Multimodel detection and attribution of extreme temperature changes. J. Clim. 26, 7430–7451 (2013).  https://doi.org/10.1175/JCLI-D-12-00551.1​ CrossRefGoogle Scholar
  25. Min, S.-K., et al.: Changes in weather and climate extremes over Korea and possible causes: a review. Asia-Pac. J. Atmos. Sci. 51(2), 103–121 (2015).  https://doi.org/10.1007/s13143-015-0066-5 CrossRefGoogle Scholar
  26. Moberg, A., et al.: Indices for daily temperature and precipitation extremes in Europe analyzed for the period 1901–2000. J. Geophys. Res. 111, D22106 (2006).  https://doi.org/10.1029/2006JD007103 CrossRefGoogle Scholar
  27. Onogi, K., et al.: The JRA-25 reanalysis. J. Meteor. Soc. Japan. 85(3), 369–432 (2007).  https://doi.org/10.2151/jmsj.85.369 CrossRefGoogle Scholar
  28. Panagiotopoulos, F., Shahgedanova, M., Hannachi, A., Stephenson, D.B.: Observed trends and teleconnections of the Siberian high: a recently declining center of action. J. Clim. 18(9), 1411–1422 (2005).  https://doi.org/10.1175/JCLI3352.1 CrossRefGoogle Scholar
  29. Qian, W., Lin, X., Zhu, Y., Xu, Y., Fu, J.: Climatic regime shift and decadal anomalous events in China. Clim. Chang. 84(2), 167–189 (2007).  https://doi.org/10.1007/s10584-006-9234-z CrossRefGoogle Scholar
  30. Ryoo, S.-B., Kwon, W.-T., Jhun, J.-G.: Characteristics of wintertime daily and extreme minimum temperature over South Korea. Int. J. Climatol. 24(2), 145–160 (2004).  https://doi.org/10.1002/joc.990 CrossRefGoogle Scholar
  31. Yang, S., Feng, J., Dong, W., Chou, J.: Analyses of extreme climate events over China based on CMIP5 historical and future simulations. Adv. Atmos. Sci. 31(5), 1209–1220 (2014).  https://doi.org/10.1007/s00376-014-3119-2 CrossRefGoogle Scholar
  32. Zhang, X., Lu, C., Guan, Z.: Weakened cyclones, intensified anticyclones and recent extreme cold winter weather events in Eurasia. Environ. Res. Lett. 7(4), 044044 (2012).  https://doi.org/10.1088/1748-9326/7/4/044044 CrossRefGoogle Scholar

Copyright information

© Korean Meteorological Society and Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Earth and Environmental SciencesSeoul National UniversitySeoulSouth Korea
  2. 2.Division of Environmental Science and EngineeringPohang University of Science and TechnologyPohangSouth Korea

Personalised recommendations