Effects of Non-orographic Gravity Wave Drag on Seasonal and Medium-range Predictions in a Global Forecast Model

  • Hyun-Joo ChoiEmail author
  • Ji-Young Han
  • Myung-Seo Koo
  • Hye-Yeong Chun
  • Young-Ha Kim
  • Song-You Hong


This study implements the parameterizations of convective and frontal gravity wave drag (GWD) with wide phase speed spectra into a global forecast model with a model top near 0.3 hPa. The new convective GWD scheme replaces the existing one that considers only a stationary convective GW, and the frontal GWD scheme is newly introduced. When the new GWD schemes are used, the Rayleigh friction, applied above 2 hPa to mimic the effects of missing GWD, is removed. The convective (frontal) GWs are generated mainly in the Intertropical Convergence Zone and winter extratropical storm track regions (extratropics where strong baroclinicity exists). The convective and frontal GWD derived from the new schemes are significant near the model top, with maxima of ~2-4 and ~26-58 m s−1 day−1, respectively. The differences in convective GWD between the stationary and non-stationary schemes appear mainly in the tropics and summer hemisphere, where stationary GWs cannot propagate upward. The new schemes improve the seasonal representation of stratospheric wind, through changes in both the GWD and the resolved wave forcing, which is modulated by the changed large-scale wind due to the GWD. The downward influence, in response to the changed GWD, is also positive in the tropospheric fields, such as subtropical jet and planetary-scale disturbances. For the medium-range forecasts, improved skill scores on wind speed are achieved globally with the new schemes. The improvements mostly appear only in the stratosphere during the early forecast period (~3 days) but expand to the troposphere as forecast time increases.

Key words

Non-orographic gravity wave drag parameterization convection front forecast model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bae, S. Y., S.-Y. Hong, and K. S. Lim, 2016: Coupling WRF doublemoment 6-class microphysics schemes to RRTMG radiation scheme in weather research forecasting model. Adv. Meteorol., 2016, 1-11, doi: 10.1155/2016/5070154.CrossRefGoogle Scholar
  2. Baek, S., 2017: A revised radiation package of G-packed McICA and twostream approximation: Performance evaluation in a global weather forecasting model. J. Adv. Model. Earth Syst., 9, 1628-1640, doi:10. 1002/2017MS000994.CrossRefGoogle Scholar
  3. Beres, J. H., 2004: Gravity wave generation by a three-dimensional thermal forcing. J. Atmos. Sci., 61, 1805-1815.CrossRefGoogle Scholar
  4. Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83-109.CrossRefGoogle Scholar
  5. Charron, M., and E. Manzini, 2002: Gravity waves from fronts: Parameterization and middle atmosphere response in a general circulation model. J. Atmos. Sci., 59, 923-941.CrossRefGoogle Scholar
  6. Choi, H.-J., and H.-Y. Chun, 2011: Momentum flux spectrum of convective gravity waves. Part I: An update of a parameterization using mesoscale simulations. J. Atmos. Sci., 68, 739-759, doi:10.1175/2010-JAS3552.1.Google Scholar
  7. Choi, H.-J., and H.-Y. Chun, 2013: Effects of convective gravity wave drag in the Southern Hemisphere winter stratosphere. J. Atmos. Sci., 70, 2120-2136, doi:10.1175/JAS-D-12-0238.1.CrossRefGoogle Scholar
  8. Choi, H.-J., and S.-Y. Hong, 2015: An updated subgrid orographic parameterization for global atmospheric forecast models. J. Geophys. Res. Atmos., 120, 12445-12457, doi:10.1002/2015JD024230.CrossRefGoogle Scholar
  9. Choi, H.-J., S.-J. Choi, M.-S. Koo, J.-E. Kim, Y. C. Kwon, and S.-Y. Hong, 2017: Effects of parameterized orographic drag on weather forecasting and simulated climatology over East Asia during boreal summer. J. Geophys. Res. Atmos., 122, 10669-10678, doi:10.1002/2017JD026696.CrossRefGoogle Scholar
  10. Chun, H.-Y., and J.-J. Baik, 1998: Momentum flux by thermally induced internal gravity waves and its approximation for large-scale models. J. Atmos. Sci., 55, 3299-3310.CrossRefGoogle Scholar
  11. Chun, H.-Y., M.-D. Song, J.-W. Kim, and J.-J. Baik, 2001: Effects of gravity wave drag induced by cumulus convection on the atmospheric general circulation. J. Atmos. Sci., 58, 302-319.CrossRefGoogle Scholar
  12. Chun, H.-Y., H.-J. Choi, and I.-S. Song, 2008: Effects of nonlinearity on convectively forced internal gravity waves: Application to gravity wave drag parameterization. J. Atmos. Sci., 65, 557-575.CrossRefGoogle Scholar
  13. Chun, H.-Y., Y.-H. Kim, H.-J. Choi, and J.-Y. Kim, 2011: Influence of gravity waves in the tropical upwelling: WACCM simulations. J. Atmos. Sci., 68, 2599-2612, doi:10.1175/JAS-D-11-022.1.CrossRefGoogle Scholar
  14. Clayton, A. M., A. C. Lorenc, and D. M. Barker, 2013: Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Ofce. Quart. J. Roy. Meteor. Soc., 139, 1445-1461, doi:10.1002/qj.2054.CrossRefGoogle Scholar
  15. de la Cámara, A., and F. Lott, 2015: A parameterization of the gravity waves emitted by fronts and jets. Geophys. Res. Lett., 42, 2071-2078, doi:10.1002/2015GL063298.CrossRefGoogle Scholar
  16. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553-597, doi:10.1002/qj.828.CrossRefGoogle Scholar
  17. Fritts, D. C., and G. D. Nastrom, 1992: Sources of mesoscale variability of gravity waves. Part II: Frontal, convective, and jet stream excitation. J. Atmos. Sci., 49, 111-127.Google Scholar
  18. Han, J.-Y., S.-Y. Hong, K.-S. Lim, and J. Han, 2016: Sensitivity of a cumulus parameterization scheme to precipitation production representation and its impact on a heavy rain event over Korea. Mon. Wea. Rev., 144, 2125-2135, doi:10.1175/MWR-D-15-0255.1.CrossRefGoogle Scholar
  19. Haynes, P. H., M. E. McIntyre, T. G. Shepherd, C. J. Marks, and K. P. Shine, 1991: On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651-678.CrossRefGoogle Scholar
  20. Holton, J. R., 1982: The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere. J. Atmos. Sci., 39, 791-799.CrossRefGoogle Scholar
  21. Hong, S.-Y., and Coauthors, 2013: The Global/Regional Integrated Model system (GRIMs). Asia-Pac. J. Atmos. Sci., 49, 219-243, doi:10.1007/s13143-013-0023-0.CrossRefGoogle Scholar
  22. Hong, S.-Y., and Coauthors, 2018: The Korean Integrated Model (KIM) System for global weather forecasting (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0028-9.Google Scholar
  23. Hoskins, B. J., 1982: The mathematical theory of frontogenesis. Ann. Rev. Fluid Mech., 14, 131-151.CrossRefGoogle Scholar
  24. Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78, 5-20.CrossRefGoogle Scholar
  25. Jablonowski C., and D. L. Williamson, 2011: The pros and cons of diffusion, filters and fixers in atmospheric general circulation models. Lecture Notes in Comput. Sci., 80, 381-493, doi:10.1007/978-3-642-11640-7_13.CrossRefGoogle Scholar
  26. Jeon, J.-H., S.-Y. Hong, H.-Y. Chun, and I.-S. Song, 2010: Test of a convectively forced gravity wave drag parameterization in a general circulation model. Asia-Pac. J. Atmos. Sci., 46, 1-10, doi:10.1007/s13143-010-0001-8.CrossRefGoogle Scholar
  27. Kanamitsu, M., 1989: Description of the NMC global data assimilation and forecast system. Wea. Forecasting, 4, 335-342.CrossRefGoogle Scholar
  28. Kanamitsu, M., and Coauthors, 2002: NCEP dynamical seasonal forecast system 2000. Bull. Amer. Meteor. Soc., 83, 1019-1038.CrossRefGoogle Scholar
  29. Kang, M.-J., H.-Y. Chun, and Y.-H. Kim, 2017: Momentum flux of convective gravity waves derived from an offline gravity wave parameterization. Part I: Spatiotemporal variations at source level. J. Atmos. Sci., 74, 3167-3189, doi:10.1175/JAS-D-17-0053.1.Google Scholar
  30. Kim, Y.-J., S. D. Eckermann, and H.-Y. Chun, 2003: An overview of the past, present and future of gravity-wave drag parameterization for numerical climate and weather prediction models. Atmos.-Ocean, 41, 65-98.CrossRefGoogle Scholar
  31. Koo, M.-S., S. Baek, K.-H. Seol, and K. Cho, 2017: Advances in land modeling of KIAPS based on the Noah Land Surface Model. Asia-Pac. J. Atmos. Sci., 53, 361-373, doi:10.1007/s13143-017-0043-2.CrossRefGoogle Scholar
  32. Kwon, Y. C., and S.-Y. Hong, 2017: A mass-flux cumulus parameterization scheme across gray-zone resolutions. Mon. Wea. Rev., 145, 583-598, doi:10.1175/MWR-D-16-0034.1.CrossRefGoogle Scholar
  33. Lindzen, R. S., 1981: Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res., 86, 9707-9714.CrossRefGoogle Scholar
  34. Manzini, E., and N. A. McFarlane, 1998: The effect of varying the source spectrum of a gravity wave parameterization in a middle atmosphere general circulation model. J. Geophys. Res., 103, 31523-31539.CrossRefGoogle Scholar
  35. McFarlane, N. A., 1987: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44, 1775-1800.CrossRefGoogle Scholar
  36. Miller, J. E., 1948: On the concept of frontogenesis. J. Meteor., 5, 169-171.CrossRefGoogle Scholar
  37. Orr, A., P. Bechtold, J. Scinocca, M. Ern, and M. Janiskova, 2010: Improved middle atmosphere climate and forecasts in the ECMWF model through a nonorographic gravity wave drag parameterization. J. Climate, 23, 5905-5926, doi:10.1175/2010JCLI3490.1.CrossRefGoogle Scholar
  38. Park, R.-S., J.-H. Chae, and S.-Y. Hong, 2016: A revised prognostic cloud fraction scheme in a global forecasting system. Mon. Wea. Rev., 144, 1219-1229, doi:10.1175/MWR-D-15-0273.1.CrossRefGoogle Scholar
  39. Richter, J. H., F. Sassi, and R. R. Garcia, 2010: Toward a physically based gravity wave source parameterization in a general circulation model. J. Atmos. Sci., 67, 136-156, doi:10.1175/2009JAS3112.1.CrossRefGoogle Scholar
  40. Richter, J. H., A. Solomon., and J. T. Bacmeister, 2014: Effects of vertical resolution and nonorographic gravity wave drag on the simulated climate in the Community Atmosphere Model, version 5. J. Adv. Model. Earth Syst., 6, 357-383, doi:10.1002/2013MS000303.CrossRefGoogle Scholar
  41. Scinocca, J. F., 2003: An accurate spectral nonorographic gravity wave drag parameterization for general circulation models. J. Atmos. Sci., 60, 667-682.CrossRefGoogle Scholar
  42. Shaw, T. A., and T. G. Shepherd, 2007: Angular momentum conservation and gravity wave drag parameterization: Implications for climate models. J. Atmos. Sci., 64, 190-203.CrossRefGoogle Scholar
  43. Shepherd, T. G., and T. A. Shaw, 2004: The angular momentum constraint on climate sensitivity and downward influence in the middle atmosphere. J. Atmos. Sci., 61, 2899-2908.CrossRefGoogle Scholar
  44. Shepherd, T. G., K. Semeniuk, and J. N. Koshyk, 1996: Sponge layer feedbacks in middle-atmosphere models. J. Geophys. Res., 101, 23447-23464.CrossRefGoogle Scholar
  45. Shin, H. H., and S.-Y. Hong, 2015: Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions. Mon. Wea. Rev., 143, 250-271, doi:10.1175/MWR-D-14-00116.1.CrossRefGoogle Scholar
  46. Song, I.-S., and H.-Y. Chun, 2005: Momentum flux spectrum of convectively forced internal gravity waves and its application to gravity wave drag parameterization. Part I: Theory. J. Atmos. Sci., 62, 107-124.Google Scholar
  47. Song, I.-S., and H.-Y. Chun, 2008: A Lagrangian spectral parameterization of gravity wave drag induced by cumulus convection. J. Atmos. Sci., 65, 1204-1224.CrossRefGoogle Scholar
  48. Song, I.-S., H.-Y. Chun, R. R. Garcia, and B. A. Boville, 2007: Momentum flux spectrum of convectively forced internal gravity waves and its application to gravity wave drag parameterization. Part II: Impacts in a GCM (WACCM). J. Atmos. Sci., 64, 2286-2308.Google Scholar
  49. Warner, C. D., and M. E. McIntyre, 2001: An ultrasimple spectral parameterization for nonorographic gravity waves. J. Atmos. Sci., 58, 1837-1857.CrossRefGoogle Scholar

Copyright information

© Korean Meteorological Society and Springer Nature B.V. 2018

Authors and Affiliations

  • Hyun-Joo Choi
    • 1
    • 4
    Email author
  • Ji-Young Han
    • 1
  • Myung-Seo Koo
    • 1
  • Hye-Yeong Chun
    • 2
  • Young-Ha Kim
    • 3
  • Song-You Hong
    • 1
  1. 1.Korea Institute of Atmospheric Prediction Systems (KIAPS)SeoulKorea
  2. 2.Department of Atmospheric SciencesYonsei UniversitySeoulKorea
  3. 3.Severe Storm Research CenterEwha Womans UniversitySeoulKorea
  4. 4.Korea Institute of Atmospheric Prediction Systems (KIAPS)SeoulKorea

Personalised recommendations